Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  caerulein
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Caerulein-induced acute pancreatitis was studied in rats. Consistent with this type of acute pancreatitis morphological (edema, leukocytic infiltration and acinar cell vaculization) and biochemical (increase in pancreatic protein content, PAF release and serum amylase) changes developed 5 hours after caerulein administration. In addition increase in pancreatic weight and decrease in pancreatic blood flow were noticed. PAF administration caused pancreatic damage similar in some parameters to caerulein-induced pancreatitis, along with reduction of pancreatic blood flow, increase in pancreatic protein content, and serum amylase. TCV-309, a selective PAF antagonist, administered prior to caerulein and/or PAF, reduced caerulein-induced pancreatitis and prevented PAF-induced pancreatitis. Results of our present studies indicate the crucial role of PAF in pathogenesis of experimental acute pancreatitis.
Four calves were implanted a micro-radio-pressure capsule into their gallbladders in order to measure continuously pressure changes over 3 months. A special programme was designed to compute an electric signal on pressure value expressed in mm Hg. During fasting state, permanent rhythmic pressure changes were superimposed on a cyclic tonic increase in the gallbladder pressure. While rhythmic pressure changes at a frequency of 4,0 ± 0,7 cycles/10 min lasted usually 90,00 ± 7,00 s, the duration of tonic pressure changes was around 24,00 ± 2,90 min being repeated every 95,00 ± 7,00 min. After feeding, the rhythmic pressure changes exhibited a greater amplitude, and occasional long duration of a tonic increase in pressure was prolonged up to 110 min. Caerulein (1 Hg/kg) significantly increased tonic pressure changes. The most abundant response of the gallbladder was seen during the first 20 min of postinjection period, indicating direct actions on its musculature. When injecting pilocarpine (1 mg/kg) of cholinergic potency, the tonic response was more dilated and of a smaller amplitude, but rhythmic pressure changes were distinct. Infusion of 30 μM/min/20 min TCHNa (sodium taurocholate) induced a two phasic increase in gallbladder pressure lasting 35,90 ± 4,70 min. These data suggest that long duration of tonic pressure changes of the gallbladder are controlled by the hormonal, CCK dependent mechanism, but permanent rhythmic pressure changes are influenced by vagal stimulation. It also appears that bile salts can modulate pressure changes of gallbladder, especially trihyd- roksy-derivatives in the form of TCHNa, but the mechanism by which bile salts exert a contractile effect remains to be elucidated.
6
Content available remote

Increase of heat shock protein gene expression by melatonin in AR42J cells

72%
Heat shock proteins (HSPs) have been reported to protect the pancreatic cells from the acute damage produced by caerulein overstimulation. However the effects of caerulein, melatonin or hyperthermia preconditioning on mRNA signal for HSP60 in the pancreatic acinar cells has not been examined yet. The aims of this study were: 1. To investigate the gene expression for HSP60 in the pancreatic AR42J cells stimulated by melatonin, caerulein or combination of both these substances. 2. To compare above changes with mRNA signal for HSP60 in pancreatic AR42J cells subjected to hyperthermia preconditioning. AR42J cells were incubated in standard medium at 37°C for: 0, 1, 3, 5, 12 or 24 h, under basal conditions. Above cells were then subjected to heat shock (42°C) for 0, 1 or 3 h. In the next part of the study AR42J cells were incubated in presence of caerulein (10-11, 10-9 or 10-7M), melatonin (10-8 or 10-6M), or combination of above under basal conditions or following heat shock pretreatment. Gene expression for HSP60 was determined by RT-PCR. The mRNA signal for HSP60 has been observed in AR42J cells under basal conditions, and this signal was markedly and time-dependently increased in these cells subjected to hyperthermia preconditioning. Incubation of AR42J cells in presence of melatonin (10-8 or 10-6M) resulted in the significant and dose-dependent increase of gene expression for HSP60 in both groups of AR42J cells: preconditioned and in those, which were not subjected to hyperthermia. Caerulein stimulation reduced mRNA signal for HSP60. The strongest signal has been observed after the exposition of AR42J cells to hyperthermia preconditioning, combined with melatonin and caerulein. We conclude that: 1. Gene expression for HSP60 has been detected in pancreatic AR42J cells under basal conditions. 2. Hyperthermia preconditioning resulted in a significant and time-dependent increase of HSP60 signal in pancreatic AR42J cells. 3. HSP60 gene expression was significantly increased in pancreatic AR42J cells stimulated by melatonin whereas caerulein reduced this signal. 4. The strongest gene expression for HSP60 has been found in the cells subjected to the combination of hyperthermia preconditioning, caerulein and melatonin.
10
Content available remote

Leptin is the modulator of HSP60 gene expression in AR42J cells

58%
Leptin, circulating protein involved in the control of body weight and energy expenditure received attention as a modulator of immune response of the organism. Leptin receptors have been detected in the pancreas and experimental studies have shown that leptin protects the pancreas against the damage induced by caerulein overstimulation. Heat shock proteins (HSP) are endogenous proteins produced by various cells exposed to high temperature or to the noxious agents. HSP protect the cells against various environmental and endogenous stressors. The implication of HSP60 in the leptin-induced pancreatic protection has not been examined yet. The aim of this study was: to investigate the changes of HSP60 mRNA signal in the pancreatic AR42J cells subjected to caerulein and leptin. AR42J cells were incubated in standart medium at 37°C for: 0, 1, 3, 5, 12 or 24 h, under basal conditions. Incubation time of 3 h was selected for the next experiments. AR42J cells were incubated in presence of caerulein (10-11, 10-9 or 10-7M), leptin (10-8 or 10-6M), or combination of above. Gene expression for HSP60 was determined by RT-PCR. The mRNA signal for HSP60 has been observed in AR42J pancreatic cells under basal conditions. Incubation of AR42J cells in presence of leptin (10-8 or 10-6M) resulted in the significant increase of gene expression for HSP60 in both groups of AR42J cells. Caerulein stimulation reduced mRNA signal for HSP60. The strongest mRNA signal for HSP60 has been observed after the exposition of AR42J cells to combination of leptin and caerulein. We conclude that: 1. Gene expression for HSP60 has been detected in pancreatic AR42J cells under basal conditions. 2. HSP60 gene expression was significantly increased in pancreatic AR42J cells stimulated by leptin whereas caerulein reduced this signal. 3. The strongest gene expression for HSP60 has been detected in the cells incubated with combination of caerulein and leptin.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.