Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Yellow River
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Three sites with both degraded alpine Kobresia meadow (DM) and adjacent mix-seeded perennial grasses pastures (MSP) in the headwater region of the Yellow River, Qinghai-Tibetan Plateau, were selected to investigate plant and soil organic carbon (SOC), total nitrogen (TN) and their isotope composition. The SOC and TN in the top soil layer to a depth of 10 cm were significantly affected by ploughing and planting mix-seeded perennial grasses. The SOC content in 0–10 cm soil layer of MSPs was 25.6%, 5.5% and 12.9% lower than those of DMs at the I-III sites, respectively, and the rate of OC density loss was 23.8, 14.5 and 18.2%, respectively. The soil TN content in 0–10 cm soil layer of MSPs was 16.6%, 2.2% and 9.4% lower than those of the DMs at three sites, respectively, and the TN density was 15.6, 10.6 and 15.3% lower than those of DMs, respectively. The plant and soil ¹³C values (-27.03‰, -25.16‰, respectively) suggest that the vegetation of both DMs and MSPs are C₃ plant communities. The 15 N value in the soil (>4‰) was significantly greater than in plants (<2‰). No differences of either ¹³C or ¹⁵N abundance between MSPs and DMs at Site I and II, but were found at Site III, indicating that the effects were site specific. The rehabilitation of a degraded Kobresia meadow has a significant influence on the soil properties, SOC and TN. Caution should be taken in site selection before performing conversion.
The study pays attention to disturbances in early successional communities of wetland vegetation. We conducted artificial disturbances in a community of Suaeda salsa and Phragmites australis in the Yellow River Delta (China). Eight types of disturbances combining mowing treatments with species treatments were applied. Removal of the standing litters of P. australis or not was defined as mowing treatments, and removal of two species solo or both was defined as species treatments. We sampled 80 quadrats from the treatments plots at different intervals after the disturbance to investigate plant height, abundance, aboveground biomass, the distance between plants to reflect the effect of disturbance on composition, structure, productivity, and function of the plant communities. The strategies of seedling emergence and height growth differed as the canopy changed. Biomass contribution of different species, combined with disturbance intensity, was the main factors that affected the productivity. Homogeneity of disturbance was better for maintaining the functions of plant community in compared with the competitiveness (C), stress-tolerance (S) and ruderality (C-S-R) signatures with the control. Facilitations were reflected by the stagger arrangements in relative growth rates of the two species and in plant-plant interactions calculated by a modified function of competition. Adapting to symmetric disturbance and developing facilitative interactions are important requirements for early succession terrestrial vegetation to establish and stabilize in the seriously saline environments of wetlands.
3
100%
The source area of the Lancang (Mekong), Yangtze and Yellow rivers is named in Chinese Sanjiangyuan (source of three rivers). Geographical characteristics of these rivers, and various rivers at the margin of the Qinghai- Tibetan Plateau (Jialing, Minjiang, Dadu, Yalong and Jinsha) are summarized from fi eld investigations along with digital elevation model (DEM) analyses and satellite images. Uplift of the Qinghai-Tibetan Plateau has resulted in an asymmetrical distribution of tributaries for stream networks at the margins of the plateau. Almost all tributaries join the trunk stream from the northwest. Three types of drainage network are evident: plume, nervation and dendritic. In general, plume networks have a large number of first order streams. Nervation networks have a main stream and parallel tributaries. Dentritic networks are characrterized by continuous bifurcation and have a branch-like appearance. Most stream networks in the Sanjiangyuan region are of the nervation type. Several large knickpoints are evident along the longitudinal profi les of the Yellow and Yangtze Rivers. Channel aggradation immediately upstream of these knickpoints marks a transition in river processes from vertical bed evolution (i.e. incision) to horizontal channel adjustment (and associated braided and anabranching channels).
Grazing can change plant community composition and structure, which may alter the functions of the shrub meadow ecosystem. Grazing effects on Potentilla fruticosa shrub community in the headwater region of the Yellow River, which is in core area of the Qinghai-Tibet Plateau, are studied to provide adequate protection decision-making. We investigated continuous grazing and seasonal enclosure effects on P. fruticosa shrub communities. Three sites of P. fruticosa shrub comprising both continuous grazing and seasonal enclosure treatments were selected. The size of each fenced plot of P. fruticosa shrub was about 3000 m², the stocking rate was about 5 heads per 100 m² in continuous grazing treatment. Three samplings were made in each growing season of 2003 and 2004. Cover of vegetation, plant species composition and vegetation height were investigated in seven 1 × 1 m quadrates in each treatment. Above-ground biomass was measured in five 0.5 × 0.5 m quadrates. Shrub, forb, graminoid and sedge plant materials were clipped at ground level and oven-dried at 85ºC to a constant mass. Plant composition was affected by long term continuous grazing and changes were caused by forb species shifting. No apparent difference in species richness between the grazed and ungrazed communities over the growing months were found but the Shannon’s diversity indices of the grazed communities in June and July were higher than that of the ungrazed but lower in the late August and September. Live vegetation cover was reduced by 6.7%, 7.3% and 11.5%, respectively, owing to grazing in July, August and September, but not in June (P> 0.05). Forbs took up more than 50% cover of the vegetation in both grazed and ungrazed treatments. Relative cover of sedges and forbs in ungrazed treatment decreased in July, August and September, while that of graminoids increased more than 70% in the same period. Live vegetation height was reduced by 27% (2004) and 23% (2003) in late August and early September, but not in early growing season. Grazing reduced total above-ground biomass by 35%, 37% and 36% in July, August and early September, respectively, and the reduction was mainly in forb biomass. Continuous grazing affects plant composition and species diversity. The quantitative characteristics of P. fruticosa communities were influenced by grazing over growing months, but the effects were offset by non-growing season grazing.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.