Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Lake Niegocin
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Industrial processes and the use of fertilizers are the main causes for the rapid eutrophication of lakes. Different indices, both chemical and biological, may be used to assess a level and a rate of the eutrophication process. Zooplankton indices can be among them, as zooplankton community structure is determined primarily by the physical and chemical environment and modified by biological interactions, i.e. predation and interspecific competition for food resources. Among biological indices of trophic state of lake, those based on densities and structure of crustacean communities seem to respond weaker. There are, however, patterns of crustacean communities connected with trophic state of lakes. Thus, an increase in trophic state causes: (1) an increase in the total numbers of crustaceans; (2) an increase in the total biomass of Cyclopoida; (3) an increase in the contribution of the biomass of Cyclopidae to the total crustacean biomass; (4) an increase in the ratio of the biomass of Cyclopoida to the biomass of Cladocera; (5) a decrease in the average body weight of Crustacea; (6) an increase in the ratio of Cladocera to Calanoida numbers; (7) an increase in the ratio of Cyclopoida to Calanoida numbers; (8) an increase in the dominance of species indicative of high trophy (Mesocyclops leuckartii, Thermocyclops oithonoides, Diaphanosoma brachyurum, Chydorus sphaericus, Bosmina (Eubosmina) coregoni thersites) in the numbers of all indicative species. Crustacean zooplankton was sampled at the deepest place in a lake at 1 m intervals from the surface to the bottom of epilimnion layer, and then samples were pooled together for the layer. Samples were taken once a year, during the summer stagnation. The material was collected from a total of 41 dimictic and 33 polymictic lakes within Masurian Lake District, Iława Lake District and Lubawa Upland. Among above-mentioned indices, six were the best correlated with trophic state of lakes. Below are formulas which enable to assess trophic state of lakes regardless of their mixis type (TSICR) from parameters of abundance and structure of crustacean communities: (1) TSICR1 = 25.5 N⁰‧¹⁴² (R² = 0.32), where TSI = trophic state index; N = numbers (ind. l⁻¹); (2) TSICR2 = 57.6 B⁰‧⁰⁸¹ (R² = 0.37), where B = biomass (mg w.wt. l⁻¹); (3) TSICR3 = 40.9 CB⁰‧⁰⁹⁷ (R² = 0.35), where CB = percentage of biomass of Cyclopoida in the total biomass of Crustacea (%); (4) TSICR4 = 58.3 (CY/CL)⁰‧⁰⁷¹ (R² = 0.30), where CY/ CL = ratio of the Cyclopoida biomass to the biomass of Cladocera (%); (5) TSICR5 = 5.08 Ln (CY/CA) + 46.6 (R² = 0.37), where CY/CA = ratio of Cyclopoida numbers to the numbers of Calanoida; (the relationship covering exclusively dimictic lakes); (6) TSICR6 = 43.8 e⁰‧⁰⁰⁴ (IHT) (R² = 0.30), where IHT = percentage of species indicative of high trophy in the indicative group’s numbers. It was assumed that the lakes with a TSICR under 45 are mesotrophic, those with a TSICR value of 45–55 are meso-eutrophic, those with a TSICR value of 55–65 – eutrophic and those with a TSICR above 65 – hypertrophic. Although crustacean indices of trophic state of lakes seem to be less useful than other biological indices, they may be recommended in assessing the quality of lake waters.
In summer 2007 water samples were collected in three lakes situated in the region of the Great Mazurian Lakes (northeastern Poland) displaying different types of catchment area: Lake Niegocin, Lake Piłwąg and Lake Rekąty. The main objective of this study was to analyze the difference in species composition of cyanobacteria and to determine the concentration of cyanotoxins. Potentially toxic species of cyanobacteria were found to be the dominant species in each sample. Microcystis aeruginosa was dominant in Lake Niegocin, Limnothrix redekei and Planktolyngbya limnetica in Lake Piłwąg, and Planktothrix agardhii in Lake Rekąty. Furthermore, the occurrence of an invasive cyanobacteria species, Cylindrospermopsis raciborskii, was detected in two lakes, Rekąty and Piłwąg. The toxin concentration in all of the samples did not exceed the guideline value of 5 μg·l-1 recommended by the World Health Organization for recreational waters, which may indicate the dominance of non-toxic strains.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.