Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Eruca sativa
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The present study deals with biochemical and physiological methods for assessment of the optimal nutrient supply for the growth and development of garden rocket (Eruca sativa Mill.), edible vegetable. Two nitrate (0.3; 0.6 g N dm⁻³ of medium) and three potassium doses (0.3; 0.6; 0.9 g K dm⁻³ of medium) in the form of sulphate or chloride were examined. At the higher nitrate dose and the sulphate form of potassium the intense green colour of leaves, higher content of nitrates, flavonoids, L-ascorbic acid and lower carbohydrates content correlated with elevated growth parameters, e.g. the number of leaves and partially plant fresh weight. The proline and anthocyanin contents weakly diversified the nutrient supply. Despite the lack of modification in the photosynthetic pigment concentration, the chlorophyll fluorescence parameters were significantly improved when the higher nitrate dose accompanied the sulphate form of potassium (higher values of fluorescence decrease, maximum quantum efficiency of PSII photochemistry in the dark-adapted state, photochemical quenching and lower values of the fraction of absorbed light energy not used for photochemistry). The biochemical and photosynthetic parameters corresponding to the morphological characteristics (leaf colour, number of leaves and plant fresh weight) indicated that better nutrient conditions were provided to plants under the combined fertilization of the higher nitrate dose and the sulphate form of potassium.
A vegetation experiment was conducted in 2001–2002 in an unheated greenhouse on the effect of differentiated nitrogen fertilization on yield and quality of garden rocket. Nitrogen was used in three forms, i.e. lime saltpeter, urea and ammonium sulphate, and in three doses: 0.2; 0.4; 0.6 N·dm⁻³ (2001) and 0.25; 0.50; 0.75 g N·dm⁻³ (2002). The plants’ growth, yield and content of nutrients were evaluated and an chemical analysis of the substrate after the harvest was conducted. The studies pointed out a possibility of cultivating garden rocket in autumn in an unheated greenhouse. A higher yield of fresh weight was obtained in the treatments with lime saltpetre and urea as compared with ammonium sulphate. Increased doses of nitrogen, independently of the kind of the applied fertilizer, caused a decrease of the yield of rocket fresh weight. The studied plants of garden rocket were characterized by a high content of dry matter, vitamin C, protein, potassium and calcium. The content of nitrates in the dry matter of leaves was within the range 0.02–0.98%, depending on nitrogen dose and the year of studies. The application of 0.2–0.25 g N·dm⁻³ of the substrate in the autumn cultivation of rocket proved to be the most advantageous in view of the highest yield of fresh weight, the highest content of vitamin C and the lowest proportion of nitrates in the leaf dry weight.
6
67%
Vegetables are important dietary components and constitute a group of the lowest calorie raw produce with a high nutritional value. The aim of the present study was to determine the nutritional and energy potential of the leaves of rocket (Eruca sativa Mill.) as affected by different regimes of plant nitrogen and potassium nutrition. Plants were grown in a greenhouse in a peat substrate, using varying amounts of nitrogen and potassium: 0.3 and 0.6 N as calcium nitrate (Ca(NO₃)₂) as well as 0.3 K, 0.6 K, and 0.9 K in the form of potassium sulphate (K₂SO₄ ) and potassium chloride (KCl), with a constant level of the other macro- and micronutrients. Fresh leaf yield and the content of soluble sugars, fat, ash and dietary fibre were determined, as well as the caloric value of the plant material studied was estimated. It was shown that the nutritional value of rocket leaves could be increased by using an appropriate system of plant mineral nutrition. The use of KCl significantly increased the nutritional value of rocket leaves, as determined by the presence of fat and dietary fibre. The application of K₂SO₄ proved to be more beneficial due to the concentration of carbohydrates and available carbohydrates. An increase in the rate of nitrogen caused an increase in biomass and fat content, but also contributed to a decrease in the concentration of glucose and fructose. The higher rates of potassium had an effect on increasing the content of fat, ash and glucose. The energy value of rocket leaves was not modified by mineral fertilization applied.
We studied the effect of differentiated nitrogen-potassium fertilization upon the growth, yield and chemical composition of garden rocket leaves grown in unheated greenhouse in autumn. Two nitrogen doses were applied (0.3 and 0.6 g dm⁻³) in the form of calcium saltpeter and two doses of potassium (0.3, 0.6 and 0.9 g dm⁻³) in the form of chloride and sulfate. The increased amounts of nitrogen and potassium generally contributed to the increase of fresh leaf weight yield. Plants nourished with KCl had larger concentrations of L-ascorbic acid, chlorine and calcium, whereas the contents of protein, sugars in total, as well as sulfates were smaller, as compared to plants nourished with K₂SO₄.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.