Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Carica papaya
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Organic materials are alternatives to chemicals for safe and healthy fish production. This study aimed at comparing the buffer efficiency of pawpaw leaves and stem with calcium carbonate on acidic borehole water at different dosages for aquaculture. Forty-eight, 25-litres shaded plastic tanks of three replicates per treatment were used. The tanks were 20 litres filled with experimental water (pH 4.7). There were sixteen treatment (T) levels (T0 to T16). T1 to T15 were classified into three groups of three dosage levels (G) (2.4g [G1], 6g [G2] and 12g [G3]) per pawpaw leaves and stem [dried leaves (DL), fresh leaves (FL), dried stem (DS) and fresh stem (FS)] and calcium carbonate (CA). pH and temperature were monitored once daily while dissolved oxygen, alkalinity and calcium were measured weekly for thirty-one (31) days using standard method. Data were analyzed for analysis of variance, Duncan Multiple Range and descriptive statistics. At the end of the study period, the minimum (4.7) and maximum (7.30) pH were recorded in T0 and T11 respectively. Water pH progressively increased from Day 1 to Day 31 in all the treatment levels. The order of buffer efficiency of pawpaw leaves and stem at the end of the experiment in all the treatment groups was FS
The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.).The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR) fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC) and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.
A new crystal form of papain from the latex of Carica papaya, complexed with an inhibitor (Z-Arg-Leu-Val-Gly-CHN2) was obtained by the vapor-diffusion method using a methanol/ethanol mixture as a precipitant. The slat-like crys­tals are monoclinic, space group P2 1, with unit cell parameters a = 42.6 A, b = 49.8 A, c = 50.5 A, β= 111.9°, and contain one molecule in the asymmetric unit. The crystals are stable in the X-ray beam and diffract beyond 1.8 A. A molecular model has been placed in the unit cell by molecular replacement.
Carica papaya Linn. is one of the valuable plant used for various purposes in medicinal field. Leaves, fruit and seeds of the C. papaya are used as ethnomedicine. This work describes biochemical constituents of leaves of C. papaya. Fresh leaves samples of the plant were collected during the month of January, 2013 from different parts of Bhuj in Kachchh district (Gujarat), India. The purpose of the study was to evaluate the biochemical composition in leaves of C. papaya growing in the semi-arid region of Gujarat and based on the result to justify its importance in various treatments of diseases. The dried leaves were further analyzed for biochemical constituents like Ca2+, Mg2+, Na+, K+, Clˉ and Li+. The results indicated that the leaf extract of C. papaya has high potentiality for curing number of diseases.
The objective of the present investigation was to study the chemical composition of leaves of Carica papaya belonging to family Caricaceae growing in semi-arid region of Kachchh district, Gujarat, India. The leaves of C. papaya were subjected to Energy Dispersive X-ray Fluorescence (EDXRF) and were analyzed for different mineral composition. As the X-ray Fluorescence is one of the most reliable and accurate, as well as it is also a consistent and non-destructive method for analysis of major and trace elements using a single pressed pellet. During the study it was found that Oxygen, Calcium, Magnessium, Potassium were noted in higher amounts, compared to that of other elements like Silicon, Sulphur, Phosphorus, Chloride, Strontium, Stanous, Aluminium, Cromium and Mangenese, whereas the elements which were not detected in leaves of C. papaya are Vanadium, Titanium, Cobalt and Tantalum.
An experimental study on Carica papaya leaves was carried out in Thermo gravimetric analyzer (TGA), Differential Thermal Analyzer (DTA) and Differential Scanning Calorimetric (DSC) analyzer to investigate the effects of reaction atmosphere on thermal chemical characteristics. Experimental results show that In DSC curve, Endothermic peak at 101 °C is attributed to dehydration/Water loss from surface and pores of the powder sample. Step at 215 °C is associated with second order phase transition such as Glass Transition and it should be further confirmed in second heating (During heat- cool- heat cycle). Endothermic peak at 336 °C is associated protease thermal decomposition /Beta Cyclodextrin breakdown. In the TGA Curve, The initial 4 % weight loss is due to water loss from surface/pores of powder sample. Second weight loss between 200-450 °C is associated to degradation of cellulose and hemicellulose.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.