Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Based on Landsat 8-OLI (operational land imager) images and field surveys, we mapped soil salinization across seven ecosystems in the Manas River basin (MRB), and two models of soil salinization (namely an index model and a sensitivity model) were constructed on a regional scale and on the scale of a unit. ArcGIS ordinary Kriging interpolation was used to determine the spatial distribution of the sensitivity of each ecosystem to soil salinity. The ecosystems differed markedly in their sensitivity: the grassland ecosystem was the most sensitive and the farmland ecosystem was the least sensitive; the other five ecosystems, in descending order of their sensitivity, were desert, urban, forest, wetland, and shrubland. In terms of area, the ecosystems less sensitive to salinity accounted for 40% of the total area; those slightly sensitive accounted for approximately 24%; moderately sensitive, 12%; highly sensitive, 14.5%; and extremely sensitive, 9.5%. The extremely sensitive areas were mostly distributed around Lake Manas while the highly sensitive areas were mainly downwind of the lake. The moderately sensitive areas were occupied mainly by the wetlands and grasslands, the slightly sensitive areas by the deserts, and the least sensitive areas by the farmlands.
The species of the genus Duriocoris Miller, 1940 from China are reviewed. Two species are recognized, described or redescribed, illustrated. Duriocoris geniculatu is described as a new species. This genus and Duriocoris serratus Miller, 1940 are reported for the first time to China. A key to the three species of the genus is provided.
Adventitious roots (ARs) play an irreplaceable role in the uptake of water and nutrients due to under-developed principle root in plants. The process of ARs formation is affected by plant hormone. In this study, by employing High-Throughout Tag-sequencing Technique and ELISA method, we analyzed of the transcriptome and indole-3-acetic acid (IAA) content to monitor the changes of metabolism regulated by ethylene signaling in lotus. Exogenous application of ethephon (ethylene precursor) dramatically accelerated ARs development, and while restrained by 1-methylcyclopropene (1-MCP, the ethylene perception inhibitor), indicating the crucial role ethylene in ARs development. Transcriptomic analysis showed that both treatment of ethephon and 1-MCP dramatically altered the expression of numerous genes. In total, transcriptional expressions of 694 genes were induced and 554 genes were suppressed in ETH/CK0 stages compared with MCP/CK0 stages. Most of these up-regulated genes exhibited the one-three folds changes. In ETH/MCP libraries, we found nine and five genes involved in the metabolism or transcriptional responses to ethylene and IAA, and fourteen genes, which were considered to NAC, bHLH, AP2-EREBP, MYB, LOB, bHLH and bZIP families, respectively, exhibited an increase in transcriptional level. In addition, an enhanced mRNA levels of seven genes [1-aminocyclopropane-1-carboxylate oxidase (ACO), leucine-rich repeat receptor, pectinesterase, pyruvate decarboxylase, ethylene oxide synthase, respiratory burst oxidase homolog protein and xyloglucan endotransglucosylase] relevant to ARs formation were detected in was detected in ETH/MCP libraries. Furthermore, we found that IAA content was obviously decreased after applications were detected on ethephon and 1-MCP. However, the decreased IAA level in 1-MCP treatment was more pronounced than that in ethephon treatment, and kept a low level during the whole periods of ARs development. Taken together, our findings provided a comprehensive understanding of ethylene’s regulation during ARs formation in lotus seedlings.
This study focused on the function of hnRNP-R in the regulation of c-fos expression. We demonstrated that hnRNP-R accelerated the rise and decline phases of c-fos mRNAs and Fos proteins, allowing PMA to induce an augmented pulse response of c-fos expression. Then, we examined the role of the c-fos-derived AU-rich element (ARE) in hnRNP-R-regulated mRNA degradation. Studies with the ARE-GFP reporter gene showed that hnRNP-R significantly reduced the expression of GFP with an inserted ARE. Moreover, immunoprecipitation-RT-PCR analysis demonstrated that in R28 cells and rat retinal tissues, the c-fos mRNA was co-immunoprecipitated with hnRNP-R. These findings indicate that hnRNP-R regulates the c-fos expression in retinal cells, and that the ARE of c-fos mRNAs contributes to this regulation.
Emissions trading schemes (ETS) have been treated as a cost-effective mitigation measure to effectively control carbon emissions. Industrial carbon emission quota allocation is prior to the implementation of ETS. This study takes industrial sectors in China as a case to apportion carbon emission quotas. An informational entropy and multiple-factor mixed weighting allocation model (IEMMA) was established by considering fairness, efficiency, and feasibility from 4 aspects, i.e., emission reduction responsibility, emission reduction potential, emission reduction capacity, and industrial features. The allocation results among industrial sectors present many differences, and averaging a weighting allocation scheme is more feasible than other allocation schemes considering the fairness, efficiency, and feasibility. This study not only advances the existing literature on the issue of sectoral carbon emission quota allocation, but also provides a significant reference for China’s policymaking in ETS implementation.
Soil salinity is one of the major abiotic stresses affecting crop growth and yield worldwide. Barley is a species with higher salt tolerance among cereal plants and rich in genetic variation. It is quite important to understand the physiological mechanisms of genotypic difference in salt tolerance. In this study, physiological and biochemical responses of a Tibetan wild barley genotype XZ16 (salt tolerant) and a cultivated cultivar Yerong (salt sensitive) to salt stress were investigated. The results showed that the two genotypes differed dramatically in their responses to salt stress (150 and 300 mM NaCl) in terms of plant biomass, Na+ accumulation and Na+/K+ ratio in roots and shoots, chlorophyll content, xylem sap osmolarity and electrolyte leakage. XZ16 showed less biomass reduction, lower Na+/K+ ratio and electrolyte leakage, higher xylem sap osmolarity, and vacuolar H+-ATPase and H+-PPase activities than Yerong under 300 mM NaCl. The higher salt tolerance of XZ16 may be attributed to its lower concentration of Na+ influx or more sequestration into the vacuoles. The results indicate that the Tibetan wild barley is useful for improvement of cultivated barley in salt stress tolerance.
Plants adopt several strategies to maintain cellular ion homeostasis, including physiological, biochemical, cellular, subcellular, and molecular mechanisms for fighting against salt stress. We investigated the responses of tolerant Tibetan wild barley (XZ16), tolerant (CM72) and sensitive (Gairdner) barley cultivars at physiological, cellular, and molecular levels. The results revealed that salinity induced a significantly greater reduction in total root length, surface area, diameter, and total volume in Gairdner than in CM72 and XZ16. Analysis of gene expression using quantitative RT-PCR showed that transcripts of vacuolar H⁺-ATPase and inorganic pyrophosphatase (HvHVA/68 and HvHVP1) were more abundant in leaves and roots of XZ16 and CM72 than those of Gairdner. Observation of electron microscopy detected the difference in the damage of leaf and root ultrastructure among the three genotypes under salt stress, with XZ16 and Gairdner being least and most affected, respectively. Subcellular study showed that a primary strategy to protect the cytosol against sodium toxicity was compartmentalization of sodium ions into soluble fraction (vacuoles). Gairdner showed drastically stronger sodium-specific fluorescence visualized by CoroNa-Green, a sodium-specific fluorophore, than CM72 and XZ16.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na⁺ and higher K⁺ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (Fv/ Fm), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO₂ concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na⁺ accumulation and K⁺ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.
Nitrate (NO3¯) can accumulate in high concentrations in plant cell vacuoles if it is not reduced, reutilized or transported into the cytoplasm. Such accumulation of NO3¯ in the vacuole occurs when mechanisms for NO3¯ assimilation in the cytoplasm are saturated. Moreover, other processes such as efflux across the plasma membrane might affect NO3¯ accumulation in the vacuole. These are the main reasons limiting nitrogen use efficiency (NUE) in plants. This study elucidates mechanisms for NO3¯ transport from the cytoplasm to vacuoles by the V-proton pump (V-ATPase and V-PPase) and their relationship with different NUE in four Brassica napus genotypes. Pot experiments were conducted in a greenhouse under normal (15.0 mmol L-1) and limited N (7.5 mmol L-1) concentrations of nitrate using B. napus genotypes that demonstrated either high (742 and Xiangyou 15) or low (814 and H8) NUE (g g-1). Specific inhibitors of V-ATPase and V-PPase increased nitrate reductase (NR) activity, resulting in greatly decreased NO3¯ in plant tissues. Nitrate reductase activity and NO3¯ content correlated more highly to V-PPase activity than they did to V-ATPase activity, and correlation between V-PPase activity and NO3¯ content was significantly higher than it was to V-ATPase. Genotypes with high NUE had significantly lower activities of V-ATPase and V-PPase than those with low NUE. In the high-NUE plants, lower activities of V-proton pump underlie mechanisms that result in significantly lower NO3¯ content in plant tissues of the high-NUE genotypes than those found in plant tissues of the low-NUE genotypes. Our results show that the tonoplast proton pumps V-PPase and V-ATPase strongly negatively affect NR activity and positively affect NO3¯ content. V-PPase contributed more to this regulatory mechanism than did V-ATPase.
Abscisic acid (ABA) plays an important role in regulating photosynthesis under stress. To understand the differential function of exogenous ABA in the regulation of drought tolerance between two rice (Oryza sativa L.) genotypes, upland rice (UR, resistant to drought stress) and lowland rice (LR, susceptible to drought stress), photosynthetic parameters, chlorophyll fluorescence parameters, and the expression of chloroplast and ABA biosynthesisrelated genes were investigated under 15 % polyethylene glycol (PEG) and exogenous ABA (60 µM) treatments. In both rice lines, most of the photosynthetic parameters, chlorophyll fluorescence parameters, and chloroplast and ABA biosynthesis-related gene transcript levels were rapidly reduced by PEG stress, with the exception of up-regulated levels of OsPsbA, OsNCED3, OsNCED4, and OsZEP in LR and OsNCED3, OsNCED4, and OsZEP in UR. Moreover, a rapid stress-responsive regulation mechanism was found in UR according to the more rapid and strong up-regulation of three ABA biosynthesis-related genes in UR than in LR. Under PEG stress, exogenous ABA application significantly enhanced the recovery of the net photosynthetic rate (Pₙ), stomatal conductance (Gₛ), and transpiration rate (Tᵣ) in UR, with increased expression of OsPsbD1, OsPsbD2, OsNCED2, OsNCED3, OsNCED4, and OsNCED5. These data suggest a role for chloroplast and ABA biosynthesis-related genes in photosystem II (PSII) induction by exogenous ABA in the UR genetic background.
Salt stress inhibited the growth of both tasg1 and wild-type (WT) wheat seedlings, but the inhibition in tasg1 plants was relatively weaker than that of WT. Compared to the WT, the chlorophyll content, thylakoid membrane polypeptides, Hill reaction activity, actual photochemical efficiency of PSII (ΦPSII), and Mg²⁺- and Ca²⁺-ATPase activities were higher in tasg1 under salt stress. At the same time, the photosynthetic activity of the tasg1 was significantly higher than that of WT. In addition, tasg1 plants displayed relatively less accumulation of reactive oxygen species and oxidative damage accompanied by higher activity of some antioxidant enzymes, and the up-regulation of antioxidant genes further demonstrated the improvement of antioxidant activity in tasg1 under salt stress. Furthermore, tasg1 plants also showed relatively weaker Na⁺ fluorescence and lower Na⁺ content, but relatively higher content of K⁺ in their roots and shoots, and then, the roots of tasg1 plants enhanced net outward Na⁺ flux and a correspondingly increased net inward K⁺ flux during salt stress. This might be associated with the relatively higher activity of H⁺-ATPase in tasg1 plants. These results suggest that the improved antioxidant competence and Na⁺/K⁺ ion homeostasis play an important role in the enhanced salinity tolerance of tasg1 plants.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.