Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The photosynthetic response was investigated on Chrysanthemum morifolium under dynamic light conditions in the 20–35 ºC temperature range to evaluate the effect of climatic variables on photosynthetic induction. The plant material was grown under uniform, controlled conditions and its gas exchange was analyzed. The gas exchange measurements were used to investigate the rate of induction, momentary induction state, and the opening of stomata. At the varying temperature ranges and under dynamic light conditions, C. morifolium reached a quasisteady- state induction equilibrium (ISeq(PAR,T)) within 14–45 min. For the same level of photosynthetically active radiation (PAR), the equilibrated level of steady-state induction increased as the temperature increased. It was highest approximately at 30 ºC. The induction state was equilibrated at a lower level as the temperature increased to 35 C. The interaction effect of PAR and temperature on induction state was not significant. The rate of photosynthetic induction and the time required at which the induction reached its 90 % value (t90) was influenced by PAR significantly. The light history of a leaf had a significant effect on t90, indicating that the time to reach a steady-state induction is different depending on the light environment and the period at which the leaf was exposed to light. The velocity of the photosynthetic induction was not affected by the temperature. It was associated with stomatal conductance of the leaf prior to the onset of light (gSini).
An induction-dependent empirical model was developed to simulate the C₃ leaf photosynthesis under fluctuating light and different temperatures. The model also takes into account the stomatal conductance when the light intensity just exceeds the compensation point after a prolonged period of darkness (initial stomatal conductance, gSini ). The model was parameterized for both Chrysanthemum morifolium and Spinacia oleracea by artificially changing the induction states of the leaves in the climate chamber. The model was tested under natural conditions that were including frequent light flecks due to partial cloud cover and varying temperatures. The temporal course of observed photosynthesis rate and the carbon gain was compared to the simulation. The ability of the current model to predict the carbon assimilation rate was assessed using different statistical indexes. The model predictions were accurate but the model slightly underestimated the actual overall carbon gain. The accuracy of the simulation was largely dependent on the parameters that were calculated for the particular plant species, of which the simulation is intended for. In particular, the rate of change of induction and the initial stomatal conductance were found to be highly important and these were species-specific parameters for the predictions. The model is suitable for estimating instantaneous leaf CO₂ assimilation for different herbaceous plant species under dynamic environmental conditions. It can be simply calibrated for other crops, by estimating the individual parameters.
The seeds of two safflower cultivars were investigated in order to determine their frictional and aerodynamic properties as a function of moisture content. The coefficients of dynamic friction of cultivars on aluminium, plywood, fibreglass and steel surfaces increased by 87, 56, 78, and 129% for cv. Remzibey-05 seed, and by 91, 31, 71, and 131% for cv. Dinçer seed, respectively, between the initial and final moisture content levels. The terminal velocities of the Remzibey-05 and Dinçer seeds increased by 15 and 11%, respectively, with increase in moisture content between the initial and final levels.
The aim of this study was to explore the plasmid characteristics of eight clinical Enterobacteriaceae strains containing extended broad spectrum beta-lactamases and plasmid-mediated quinolone resistance. Plasmids were transferred by conjugation or transformation and resistance determinants were investigated by PCR. We showed that at least one plasmid harbouring qnrB or qnrS determinant was transferred by conjugation in five isolates. QepA determinant was confirmed to be on a non-conjugative plasmid. We found at least one beta-lactamase gene in seven of the eight clinical isolates having plasmid-mediated quinolone resistance, which indicated that these two resistance determinants were mostly on the same conjugative plasmids.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.