Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In cases when the navigational space of the manoeuvre performed by the ship is severely limited, the procedures making use of the rudder blade, propeller screw, and thrusters are very complicated. Such situations take place when the ship manoeuvres inside the harbour area and in those cases the structure of the control system is very complex. The article describes the algorithm of multivariable control of ship motion over the water surface, which makes use of the state vector consisting of 6 variables. Three of them, which are the position coordinates (x, y) measured by the DGPS system and the ship heading y measured by gyro-compass, were obtained experimentally. The three remaining variables, which are the velocities in surge u, sway v, and yaw r directions, were estimated by Kalman filter, KalmanBucy filter and extended Kalman filter, respectively. The control algorithms making use of these observers were examined using the training ship „Blue Lady” which was navigated on the lake Silm in Ilawa/Kamionka in the Ship Handling Research and Training Centre owned by the Foundation for Safety of Navigation and Environment Protection. The experimental results obtained using control systems with three observers were finally compared between each other
The dynamical positioning system is a complex control consisting of a number of components, including: filters, observers, controllers, and propeller allocation systems. The design and preliminary analysis of operational quality of system operation are usually done based on numerical simulations performed with the aid of the mathematical model of the ship. The article presents a concept of the dynamic positioning system applied to steering the training ship Blue Lady used for training captains in the ship handling research and training centre owned by the Foundation for Safety of Navigation and Environment Protection in Ilawa/Kamionka. The simulation tests performed in the numerical environment of Matlab/Simulink have proved the usability of the designed system for steering a ship at low speed
This paper presents the designs of two observers, which are: the extended Kalman filter and the nonlinear passive observer. Based on the measured values of ship position and heading, the observers estimate the surge, sway and yaw velocities of the ship motion. The observers make use of the simplified nonlinear mathematical model of ship motion in which the neglected ship dynamics and disturbances are modelled using bias. The designed observers firstly have been simulated on a computer model where their parameters were calibrated, and then were implemented on the physical model of the training ship “Blue Lady” in the ship handling centre in Ilawa-Kamionka. The comparative analysis was done with respect to the estimated variables describing the ship motion in three directions: surge, sway and yaw
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.