Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Echinacea purpurea (L.) is one of the important medicinal plant species. To obtain the tetraploid plants of Echinacea purpurea with improved medicinal qualities, the root tips of two true leaves seedlings were imbibed in 0.25 % (w/v) colchicine solution for 24, 48, 72, 96 and 168 h. The ploidy level of plants was determined by chromosome counting of root tip cells, and confirmed by flow cytometric analysis. Tetraploid induction occurred in seedlings treated for 24, 48 and 72 h at colchicine solution. The morphological, physiological, cytological, and phytochemical characteristics of diploid and colchicine-induced tetraploid plants were compared. Results indicated that tetraploid plants had considerable larger stomata, pollen grain, seed and flower. Moreover, chloroplast number in guard cells, amount of chlorophyll (a, b, and a + b), carotenoids as well as width and thickness of leaves were increased in tetraploids. However, stomata frequency, leaf index, plant height, and quantum efficiency of photosystem II in tetraploid were lower than diploid plants. High-performance liquid chromatography analysis showed that leaves of the tetraploid plants had more cichoric acid (45 %) and chlorogenic acid (71 %) than diploid plants. It was concluded that morphological and physiological characteristics can be used as useful parameters for preliminary screening of putative tetraploids in this species.
Lemon verbena (Lippia citriodora H.B.K.) from Verbenaceae family is a valuable aromatic and medicinal plant due to the extensive use of its essential oil in various pharmaceuticals and food products. However, the plant growth is highly sensitive to cold stress which could influence the quantity and quality of the extracted essential oil. The objective of this work was to investigate the interaction effect of anti-chilling agent and temperature on quality and quantity of essential oil produced from lemon verbena. The anti-chilling agents consisted of glycerol (GLY), ethylene glycol (EG), and polyvinyl alcohol (PVA) which was used separately or in combination with formulations at a total concentration of 6% v/v. After spraying the anti-chilling agents, the plants were maintained at a constant temperature in the range of 5–25 °C for 48 h. The results showed that the anti-chilling application had a bio-protective effect on the essential oil content and its components especially neral and geranial as oxygenated monoterpenes. The treatment with the best protective effect on essential oil content and its constituents was 6% v/v GLY at both low and high temperatures. Furthermore, the anti-chilling application especially the treatment of 6% v/v GLY and 3% v/v GLY + 3% v/v PVA had the positive effect on enzymes activities at critical temperatures of 5 °C. The foliar application of anti-chilling formulations could improve the quality and quantity of lemon verbena essential oil and enzymatic activities under low-temperature condition.
The biostimulant products are able to improve quality and quantity of medicinal plants. The comparative effects of biostimulants foliar spraying on peppermint (Mentha piperita L.) were investigated. These studies were done on the basis of randomized complete blocks design in 3 replicates during 2015. In field conditions, the highest leaves and stems dry weight by 400 mg/l chitosan (CH) + 400 mg/l citric acid (CA), essential oil content by 200 mg/l chitosan + 400 mg/l humic acid (HA) + 400 mg/l citric acid and menthol content in 200 mg/l chitosan + 800 mg/l humic acid + 400 mg/l citric acid were observed. In greenhouse conditions, the best results of those mentioned parameters were obtained by 400 mg/l chitosan + 800 mg/l humic acid + 400 mg/l citric acid, 800 mg/l humic acid and 400 mg/l chitosan + 400 mg/l humic acid + 400 mg/l citric acid, respectively.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.