In the paper were presented the results of study for determination of natural (polonium 210Po, uranium 234U and 238U) and artificial (plutonium 238Pu, 239+240Pu and 241Pu) alpha radionuclides in aquatic environment of Poland and southern Baltic Sea as well as the recognition of their accumulation in marine trophic chain. The obtained results indicated that Vistula and Odra as well as Rega, Parsęta and Słupia are important sources of analyzed radionuclides in southern Baltic Sea. Total annual runoff of polonium, uranium and plutonium from Vistula, Odra and Pomeranian rivers to the Baltic Sea was calculated as about 95 GBq of 210Po, 750 GBq of 234+238U and 160 MBq of 238+239+240Pu. Investigation on the polonium 210Po, uranium 234U and 238U, as well as and plutonium 238Pu, 239+240Pu and 241Pu. concentration in Baltic biota revealed that these radionuclides, especially polonium and plutonium, are strongly accumulated by some species. The results indicate that the Baltic organisms accumulate polonium and plutonium from environment and the bioconcentration factors (BCF) range from 25 to 27 000. The Baltic Sea algae, benthic animals and fish concentrate uranium only to a small degree. In Baltic sediments, the concentration of uranium increases with core depth and it is connected with the diffusion of 234U, 235U and 238U from sediments via intersticial water to bottom water. The values of 234U/238U activity ratio in the sediments indicated that the possible reduction process of U(VI) to U(IV) and the removing of autogenic uranium from seawater to sediments in the Gdańsk Deep and Bornholm Deep constitutes a small part only.
The determination of uranium isotopes in different components of the Southern Baltic (sediments, soil, birds, river) is presented and discussed in this paper. The Baltic Sea is one of the most polluted water regions in the world. On the basis of the studies was found that the most important process of uranium geochemical migration in the Southern Baltic Sea ecosystem is the sedimentation of suspended material and the vertical diffusion from sediments into the bottom water. Considerable amounts of uranium isotopes are introduced into the Baltic waters together with annual inflows of saline and well-aerated waters from the North Sea. Also very high uranium concentrations are the result of weathering and erosional processes of the rocks (e.g. Sudetic rocks) which contain elevated natural concentrations of this radionuclide. Considerable amounts of uranium isotopes are introduced into the Baltic waters together with annual inflows from the Vistula and Oder rivers, also from saline and well-aerated waters from the North Sea. The results of many our studies confirm the significant role of human activities and phosphogypsum stockpile in Wiślinka as a source of these isotopes in southern Baltic.
The paper summarizes the results of plutonium findings in atmospheric fallout samples and marine samples from the southern Baltic Sea during our research in 1986–2007. The activities of 238Pu and 239+240Pu isotopes were measured with an alpha spectrometer. The activities of 241Pu were calculated indirectly by 241Am activity measurements 16–18 years after the Chernobyl accident. The 240Pu/239Pu atomic ratios were measured using accelerator mass spectrometry (AMS). The 241Pu activities indicate that the main impact of the Chernobyl accident was on the plutonium concentration in the components of the Baltic Sea ecosystem examined in this work. The highest 241Pu/239+240Pu activity ratio was found in sea water (140 ± 33). The AMS measurements of atmospheric fallout samples collected during 1986 showed a significant increase in the 240Pu/239Pu atomic ratio from 0.29 ± 0.04 in March 1986 to 0.47 ± 0.02 in April 1986.
In this study the activity of uranium isotopes 234U and 238U in Odra river water samples, collected from October 2003 to July 2004, was measured using alpha spectrometry. The uranium concentrations were different in each of the seasons analysed; the lowest values were recorded in summer. In all seasons, uranium concentrations were the highest in Bystrzyca river waters (from 27.81±0.29 Bq m−3 of 234U and 17.82±0.23 Bq m−3 of 238U in spring to 194.76±3.43 Bq m−3 of 234U and 134.88 ± 2.85 Bq m−3 of 238U in summer). The lowest concentrations were noted in the Mała Panew (from 1.33±0.02 Bq m−3 of 234U and 1.06±0.02 Bq m−3 of 238U in spring to 3.52 ± 0.05 Bq m−3 of 234U and 2.59 ± 0.04 Bq m−3 of 238U in autumn). The uranium radionuclides 234U and 238U in the water samples were not in radioactive equilibrium. The 234U/238U activity ratios were the highest in Odra water samples collected at Głogów (1.84 in autumn), and the lowest in water from the Noteć (1.03 in winter and spring). The 234U/238U activity ratio decreases along the main stream of the Odra, owing to changes in the salinity of the river’s waters. Annually, 8.19 tons of uranium (126.29 GBq of 234U and 100.80 GBq of 238U) flow into the Szczecin Lagoon with Odra river waters.
The aim of this work was the determination of trace metals (Pb, Zn, Ni, Cu, and Fe) concentrations in different plants collected in the vicinity of a phosphogypsum stack in Wiślinka (northern Poland). The measurements of trace metals were determined by two methods: AAS (atomic absorption spectrometry) and OESICP (atomic emission spectrometry with inductively coupled plasma). Enhanced levels of iron were observed in all the analyzed samples and can be explained by the higher content of this element in the groundwaters of Żuławy Wiślane. The trace metal concentrations in plant samples from the phosphogypsum stack recorded in this study are significantly higher than in control sites. The relationship between atmospheric trace metals deposition and elevated trace metals concentrations in plants and top soil layers, especially in the vicinity of the phoshpogypsum stack, was shown in this study, as well as the discharge of trace metals and other pollutants from the phosphogypsum stack, resulting from industrial human activity. The considerably high concentrations of select trace metals in vegetables collected from the vicinity of the phosphogypsum stack obtained in this study can lead to the conclusion that consumption of these vegetables for a longer period of time can harm and adversely affect human health.
Przedstawiono wyniki oznaczeń rtęci w czterech rdzeniach osadów dennych pobranych w Basenie Gdańskim i Basenie Bornholmskim. Rtęć oznaczono techniką zimnych par bezpłomieniowej absorpcji atomowej po roztworzeniu osadu na gorąco w roztworze stężonego kwasu azotowego.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.