Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The test was carried out in the Central Poland, during the autumn migration in years 1997 and 1998, and the object was the Robin Erithacus rubecula. The aim of the study was the verification of the new field method for studying directional preferences in small Passerine migrants, proposed by Busse (1995). In total, 843 Robins were tested in "Busse's cage". Directions preferred by the tested birds were distributed in conformance with wintering areas and migration routes of the species known from literature. Robins with dark legs and grey plumage at flanks pointed at the directions according to the axis Scandinavia — the Balkans, which is in consistence with the literature data. Robins tested at daytime show stronger directionality than those tested at night. Birds tested with the sun visible expressed stronger directionality than those tested under overcast. The Robins tested at day more often pointed at the return direction — to the north and to the north-east. The activity of birds in the experimental cage increased at daytime with the lack of sun visible, and with overcast, and was higher in birds with smaller fat deposit, thus it reflected mainly the normal vital activity not associated with the migration.
The lead absorbed by the roots induce oxidative stress conditions through the Reactive oxygen species (ROS) production for the pea plants cultivated hydroponically for 96 h on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO₃)₂. The alterations in O₂⁻˙ and H₂O₂ concentrations were monitored spectrophotometrically which show a rapid increase in O₂⁻˙ production during the initial 2 h, and in case of H₂O₂, during the eighth hour of cultivation. The level of ROS remained higher at all the time points for the roots of the plants cultivated with Pb²⁺ and it was proportional to metal concentration. The production of O₂⁻˙ and H₂O₂ was visualized by means of fluorescence microscope technique. They are produced in nonenzymatic membrane lipid peroxidation and its final product is Malondialdehyde, the level of which increased together with the level of H₂O₂. As stress intensity raised (duration of treatment and Pb²⁺ concentration), so did the activities of superoxide dismutases, catalase and ascorbate peroxidase antioxidative enzymes and of low-molecular antioxidants, particularly glutathione (GSH), homoglutathione (h-GSH) and cysteine substrate toward their synthesis. The root cells redox state (GSH/GSSG) dropped proportionally to lead stress intensity.
The ever-increasing environmental pollution necessitates organisms to develop specific defense systems in order to survive and function effectively. Lead is taken up by plants mainly through roots and over 96% are accumulated there.Pea plants were cultivated hydroponically for 4 days with 0.1, 0.5 and 1 mM Pb(NO3)2. Uptake of lead ions from nutrient solution and accumulation in root stems and leaves during 96-h cultivation was estimated. The root tip cells were observed with transmission electron microscope to analyse their ultrastructure and lead localization. Pb was accumulated in the cell wall, cell membrane, vacuoles, mitochondria and peroxisomes. The fractions of mitochondria and peroxisomes were isolated from pea roots purified by means Percoll gradient, and were observed by means of electron microscope with the attachment for X-ray microanalysis. Visible deposits containing Pb were observed in both cell organelles.
Lead, similar to other heavy metals and abiotic factors, causes many unfavorable changes at the subcellular and molecular levels in plant cells. An increased level of superoxide anion in Pisum sativum root cells treated with 1 mM Pb(NO3)2 evidenced oxidative stress conditions. We found increased activities of enzymatic components of the antioxidative system (catalase and superoxide dismutase) in the cytosol, mito- chondrial and peroxisomal fractions isolated from root cells of Pisum sativum grown in modified Hoagland medium in the presence of lead ions (0.5 or 1 mM). Two isoenzyme forms of superoxide dismutase (Cu,Zn-SOD and Mn-SOD) found in differ­ent subcellular compartments of pea roots were more active in Pb-treated plants than in control. Increased amount of alternative oxidase accompanied by an increased ac­tivity of this enzyme was found in mitochondria isolated from lead-treated roots. These results show that plants storing excessive amounts of lead in roots defend them­selves against the harmful oxidative stress caused by this heavy metal.
Reactive oxygen species (ROS) production and enzymatic antioxidative system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), alternative oxidase (AOX)] in nonphotosynthesizing pea plant cells were investigated. From the roots of pea plants cultivated hydroponically on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO₃)₂, the three following fractions were isolated by means of a Percoll gradient: cytosol, peroxisomal, and mitochondrial. Lead stress caused H₂O₂ production in these organelles. The mitochondria from pea cell roots were the main site of H₂O₂ production. Intensive stress caused by 0.5 mM of Pb(NO₃)₂ brought about a decrease of H₂O₂ concentration in mitochondria and peroxisomes after 3 days of the exposition, which was due to an increase of CAT activity. The isoenzymatic profile of antioxidative enzymes indicates mitochondrial and peroxisomal localization of MnSOD and cytoplasmic localization of CuSOD. APOX activity was estimated for all three fractions: cytosol, mitochondria, and peroxisomes. Simultaneously, we observed an increased expression of AOX genes on the basis of the amount of mRNA transcript and confirmed it immunologically on the level of synthesized AOX protein (36 kDa). This has been the first evidence of AOX genes expression of which is induced by the treatment of plants with lead ions and it increases along with the concentration of metal.
The presence of the single metals (Cd, Pb, Cu, Zn) induces ROS (reactive oxygen species) production and causes oxidative stress in plants. While applied in two-element combinations, trace metals impact organisms in a more complex way. To assess the resultant effect we treated the pea grown hydroponically with the trace metals in variants: CuPb, CuCd, CuZn, PbCd, ZnPb, ZnCd in concentrations of 25 µM for each metal ion. Abiotic stress inhibited root elongation growth, decreased biomass production, induced changes in root colour and morphology. It changed rate of ROS production, malondialdehyde content, increased activity and altered gene expression of defence enzymes (superoxide dysmutase, catalase, ascorbate peroxidase, glutathione reductase, γ-glutamylcysteine synthetase).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.