Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K⁺ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.
Echinochloa crus-galli and E. colona are serious weeds around the world. Morphological and biochemical features of aquatic and aerobic forms of both species were investigated experimentally by transplanting the seedlings reciprocally between water-saturated and aerobic soils (70% field capacity). When the plants were grown in water-saturated soil, a significant decrease in tiller height was observed in E. crus-galli, but not in E. colona. Upon growing the plants in aerobic soil, internode length and spike dry weight increased significantly in E. crus-galli, but decreased significantly in E. colona. Growth under aerobic condition caused a significant increase in PEPC/Rubisco ratio, but a significant decrease was observed under water-saturated conditions. When E. crus-galli was transplanted in aerobic soil, several forms of peroxidase were upregulated. Contrarily, in E. colona peroxidase isoforms did not respond to habitat change. Gene expression of ADH in E. colona was constitutive at a fairly high level under native habitats then enhanced with reversing habitat that caused anoxic and mild drought conditions. Both species tend to grow faster under aerobic conditions by modifying the photosynthetic machinery and capacity of scavenging of reactive oxygen species. Furthermore, ADH appears to play a role in supporting growth under water-saturated conditions.
Nine-day-old seedlings of two wheat cultivars (Misr1 and Sakha93) were treated with NaCl at 75, 150 and 225 mM for 15 days with or without the presence of 10 mM CaCl₂. All concentrations of NaCl led to significant decreases in fresh and dry weights of only Sakha93; however, Misr1 seemed to be affected only at the highest concentration. Nonetheless, growth parameters of both cultivars under normal conditions were most likely similar. On the other hand, lipid peroxides (as MDA) and H₂O₂ were greatly accumulated particularly in Sakha93; significant increases were detected in Misr1 treated only at 225 mM. Also, all concentrations of NaCl decreased GSH content in Sakha93; nevertheless, there were no great differences among both cultivars under normal conditions. On the other hand, the activities of the enzymatic antioxidants, GR, GST, CAT and POD were unaffected in Misr1 by all concentrations but inhibited in Sakha93. AOX responded differently to NaCl, there were decreases in Misr1 by 75 and 225 mM and in Sakha93 by 75 and 150 mM. However, the application of CaCl₂ alleviated the impacts of NaCl; there was a retraction in growth reduction in Misr1 to reach most likely those of the control. In addition, the accumulated MDA and H₂O₂ were greatly counterbalanced. On the contrary, the decreased GSH contents seemed unrecovered in Sakha93 in spite of the alleviations in magnitudes. Moreover, there were recoveries in the activities of GR and POD in Sakha93; nevertheless, GST and CAT activities remained significantly inhibited. These findings suggest that Misr1 is a more tolerant cultivar to NaCl than Sakha93. Moreover, the results reveal that ROS scavenging is efficient and became more inducible in the less susceptible than in the more susceptible cultivar. The response of AOX appeared to coincide with antioxidants so that the damage which was inflicted by NaCl can be ameliorated by overexpression of antioxidants especially with the presence of CaCl₂.
In the present study, Na⁺ manipulating genes could contribute not only to ion homeostasis but also to growth stimulation with exposing the halophyte Atriplex halimus L. to moderate NaCl concentration. The stimulation of growth was attributed to Na⁺ accumulation inside the vacuole leading to increase leaf cell size as well as accelerate leaf cell division. Increasing the assimilatory surface could result in enhancing the photosynthetic rate. The reduction of A. halimus growth compared to optimum growth at 50 and 200 mM NaCl could be attributed to osmotic effect rather than the ionic one of salt stress. The inhibition of photosynthesis seemed to be resulted from limitation of CO₂ due to the osmotic effect on stomatal conductance rather than the activity loss of photosynthetic machinery. The depletion of starch content along with the increase in sucrose content could imply that photosynthesis may be a limiting for A. halimus growth. The fast coordinate induction of Na⁺ manipulating genes could reveal that the tolerance of A. halimus to high concentrations evolved from its ability to regulate and control Na⁺ influx and efflux. V-H⁺-PPase may play a vital role in A. halimus tolerance to osmotic and/or ionic stress due to its kinetics of induction. It seemed that H⁺-ATPase plays a pivotal role in A. halimus tolerance to stress due to the increase in its protein level was detected with all NaCl concentrations as well as with PEG treatments. Both of these genes might be useful in improving stress tolerance in transgenic crops.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.