Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 27

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We determined the phosphate (P) uptake, substrate P concentration, phytase activity, acid phosphatase activity and expression of three predicted secreted purple acid phosphatase genes (PAPs) from trifoliate orange (Poncirus trifoliata L. Raf) through Glomus versiforme and phytin treatments to evaluate phytate-phosphorus utilization promoted by arbuscular mycorrhizal fungi (AMF, G. versiforme). The results showed that under inorganic phosphate (Pi) deficiency, trifoliate orange seedlings utilized phytin and G. versiforme colonization promoted trifoliate orange phytin utilization by increasing phytase activity and acid phosphatase activity in the roots and the substrate. Although the expression of the three secreted PtPAPs in the seedlings was significantly upregulated in the roots and the leaves after 2 months of -P solution application, the genes exhibited different expression patterns. In general, PtPAP1 was regulated more strongly in the roots than in the leaves, which was upregulated by G. versiforme colonization but downregulated by phytin treatment in the roots. PtPAP2 was activated by Pi deficiency in the leaves but was almost constitutive expressed in the roots. PtPAP3, which might encode a phytase, was also regulated more strongly in the roots than in the leaves and reduced by phytin treatment, but unaffected by G. versiforme colonization. The expression patterns of the PtPAP genes in response to the AMF and organic phosphate (Po) treatments suggested that the three PtPAPs had different functions in the Po utilization of trifoliate orange. Although the phytase activity and acid phosphatase activity in the roots and the substrate were not consistent with PtPAPs expression, AMF promoted the activities of the two enzymes in the substrate, which was at least partly ascribed to the regulation of PtPAPs expression.
This work compared the sensitivity of three cyanobacteria (Anabaena flos-aquae, Microcystis flosaquae and Mirocystis aeruginosa) as well as five green algae (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa) to four pesticides through 96h short-term chronic tests. The results showed that the toxicity of the pesticides to the organisms increased in the order: propiconazol > isoprocarb > flumetralin > propargite. A wide variation in toxicity response of the organisms was observed. The sensitivity of the organisms varied by over one order of magnitude for propargite, by over two orders of magnitude for isoprocarb and propiconazol, and by over three orders of maginitude for flumetralin. Compared to green algae, cyanobacteria were less sensitive. This may result in the alteration of green algae dominated species to those dominated by cyanobacteria, stimulating to cyanobcterial bloom during a certain period.
Rats were fasted 48 h and then injected once with either saline, pentagastrin, EGF, secretin or combinations of secretin and pentagastrin or EGF. Another group of rats was fasted and refed. Animals were killed 4 h later and ODC assayed in mucosa of the cecum, proximal colon, and distal colon. EGF significantly increased ODC activity in all 3 tissues. Secretin had no effect by itself on ODC or ODC stimulated by EGF. Pentagastrin significantly increased ODC of the cecum, and secretin completely inhibited the effect of pentagastrin. Refeeding fasted rats significantly induced activity in all three tissues. Immunocytochemistry using a highly specific polyclonal ODC antibody showed that ODC was confined to the crypt cells of the proximal colon. Antibody dilution techniques demonstrated that gastrin, EGF and refeeding increased the level of enzyme in these cells. Refeeding in addition caused the appearance of enzyme in surface epithelial cells. These results showed that colonic mucosal ODC is present in proliferative cells and is regulated by the same peptides known to regulate growth in this tissue. Colonic mucosal ODC also responds the same way as it does in the oxyntic gland and small bowel mucosa.
The halophyte Puccinellia tenuiflora efficiently restricts Na+ entry into roots and maintains a strong selective absorption (SA) capacity for K+ over Na+ to cope with salt stress. AKT1-type channel, an important plant K+uptake protein, may be active in regulating SA in P. tenuiflora. Here, its encoding gene PtAKT1 was isolated from P. tenuiflora. To examine the function of PtAKT1 in salt resistance and selectivity for K+ over Na+, we analyzed the transcript patterns of PtAKT1 and Na+, K+ concentration in P. tenuiflora during varying concentrations of NaCl and KCl. Results displayed that both the transcription abundance of PtAKT1 in roots and the whole plant K+ concentration did not change with varying K+ concentrations in the medium (0-10 mM). When NaCl (25 or 150 mM) was present, transcript levels of PtAKT1 weredown-regulated, accompanied by a decrease in the whole plant K+ concentration. However, under normal (5 mM) or low (0.1 mM) KCl condition, transcript levels of PtAKT1 in roots under severe salt stress (150 mM NaCl) were higher than that in mild salt condition (25 mM NaCl) within 6–24 h, so did SA during the whole treatment time (6–96 h). A strong positive correlation was existed between root PtAKT1 transcription abundance and SA values during 25 or 150 mM NaCl plus KCl. Consequently, it is proposed that PtAKT1 is a key factor in regulating selective absorption capacity for K+ over Na+ in P. tenuiflora during saline condition. Finally, we hypothesize a model that SOS1, HKT and SKOR synergistically regulate potassium and sodium transport systems in the xylem parenchyma, and subsequently modulates K+ absorption via AKT1, which is located in epidermis, cortex and endodermis. The model could also provide a likely evidence to the mechanism that SOS1 could protect AKT1 mediating K+ influx during salt stress.
This work examines the effects of six pesticides on five green algae: Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa. The re­sults indicate that the decreasing order of the average toxicity to five algae was: fluazinam > propineb > maneb > mancozeb > zineb > bromoxynil octanoate. However, according to sensitivity magnitude, the decreasing order of the ecological risk was: Maneb > bromoxynil octanoate > propineb/fluazinam > zineb/ mancozeb. There was a strong variance between toxicity and ecological risk.
A total of 53 strains of chromium-resistant bacteria were isolated from Meiliang Bay of Taihu Lake, China and were tested for Cr(VI) resistance. The strain THKCS311 with the maximum growth value under Cr(VI) stress was regarded as the optimal strain for further study. The partial sequences were amplified from the strain and the BLAST query revealed that it was closely related to Bacillus sp., and it had 98% homologous to Bacillus mycoides strain 273 and Bacillus anthracis strain ATCC 14578. Batch experiments were conducted to remove Cr(VI) using THKCS311, and the effects of the initial Cr(VI) concentration, pH, and temperature condition on Cr(VI) removal efficiency were investigated. The results showed that Bacillus sp. can mediate reduction of Cr(VI)-Cr(III), and the removal efficiency decreased with the increase of initial Cr(VI) concentration. The removal efficiency of Cr(VI) was highest at pH 6.5 and 35ºC, and removal efficiencies were 59.2% and 60.7%, respectively. SEM micrographs indicated that THKCS311 cells were irregular and cracked with the appearance of wrinkles on the surface after Cr(VI) stress.
To investigate the blood-brain barrier (BBB) permeability of mice after Listeria monocytogenes infection for further study on the mechanism of L. monocytogenes crossing the BBB, a mouse model was established and Evans blue assay was performed to assess the BBB disruption. Using relative quantitative real-time PCR, the RNA expression of Zonula occludens-1 (ZO-1), occludin and claudin-5 were detected. In addition, the protein expression level of ZO-1, occludin and claudin-5 were detected by immunohistochemistry and western blot. The extravasation of Evans blue dye was significantly different between 24 h and 96 h (P < 0.05). The mRNA expression of occludin and claudin-5 were down-regulated than that of the control group at each sampling point (P < 0.05) and ZO-1 showed a significant change at 96 h (P < 0.05). In addition, the protein expression level of occludin and claudin-5 decreased significantly at 48 h and 96 h (P < 0.05) by immunohistochemistry and western blot, compared with the control, while ZO-1 was almost unchanged (P > 0.05). All results indicating that the tight junction integrity of endothelial cells was destroyed and BBB permeability was enhanced in the process of L. monocytogenes infection, and this change was related to the decrease of the expression occludin and claudin-5.
Thirty-two crossbred (Large White × Landrace) gestating sows were used to study the effects of fermented soyabean meal (FSBM) on their reproduction performance and piglet production. Sows were randomly divided into four groups and fed diets containing 0, 5, 10 and 15% FSBM replacing the same amount of soyabean meal, respectively. The experimental periods lasted 58 days including 30 days of pre-farrowing and 28 days of post-farrowing. The results showed that nutrient digestibility of lactating sows as well as survival rate of suckling piglets were improved by FSBM additions during lactation (P < 0.05), but without significant effect on sow’s reproduction during pregnancy (P > 0.05). The results also showed that non-fat milk solids, protease activity and lactic acid bacteria counts in sow’s faeces, total antioxidant capacity, superoxide dismutase activity, glutathione and prolactin concentrations in lactating sow’s serum were significantly increased (P < 0.05), while serum cholesterol and urea nitrogen concentrations, as well as phosphocreatine kinase and aspartate aminotransferase activities were decreased with FSBM addition (P < 0.05). It could be concluded that 10 – 15% FSBM addition in lactating sow’s diets could increase sow’s reproduction and piglet production.
Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been emerging to be a multifunctional protein involved in various cellular processes, in addition to its role in energy metabolism. In this study, the SaGAPDH gene was cloned from Spartina alterniflora based on the full-length cDNA library. The open reading frame of SaGAPDH was 1014 bp, and it was encoding 337 amino acids with a calculated molecular mass of 36.40 kDa. Multiple sequence alignment showed that SaGAPDH had high amino acid sequence identity with other plant GAPDHs, and phylogenetic analysis demonstrated that SaGAPDH had a closer affinity to GAPDH in Aeluropus lagopoides (AlGAPDH). Subcellular localization suggested that SaGAPDH was located in cytosol. The recombinant SaGAPDH protein was expressed in Escherichia coli cells to characterize its catalytic activity. And E. coli carrying SaGAPDH gene showed an increased salt stress resistance. SaGAPDH gene was induced by salt stress, and to further investigate its function, transgenic Arabidopsis plants ectopically antisense-overexpressing SaGAPDH was generated. The transgenic Arabidopsis plants showed a specific down-regulation of AtGAPC1 transcript and the GAPDH enzyme activity. They also showed decreased tolerance to salt stress and down-regulation of antioxidant enzymes including catalase, ascorbate peroxidase, superoxide dismutase, and peroxidase, as well as their transcripts. Above results were further confirmed by the aggravation of oxidative damage in SaGAPDH antisense-overexpressing transgenic Arabidopsis lines, which accumulated more reactive oxygen species (ROS) such as superoxide anion (O₂˙⁻) and hydrogen peroxide (H₂O₂) under salt stress. This study indicated that SaGAPDH may play an important role in response to salt stress by the regulation of redox homeostasis.
The sequences of the internal transcribed spacer (ITS) regions of ectomycorrhizal fungi collected from Sichuan Province were analyzed using a PCR primer pair specific to T. matsutake. The amplified fragments were sequenced and compared with each other to build a phylogenetic tree. The mRNA deep sequencing approach was adopted to identify differentially expressed T. matsutake genes among the transcriptomes developed from a Xiaojin sample. A phylogenetic analysis of the aligned sequences was performed using maximum-likelihood (ML) and neighbor-joining (NJ) analyses. The results clearly showed that the KD (KM657344) and BT (KM657342) strains were more closely related to each other than to other strains. Moreover, T. matsutake from Sichuan differed from those specimens derived from Heilongjiang, Yunnam, and Guizhou provinces of China, Finland, and Japan. Furthermore, there was extremely high homology among these T. matsutake samples, despite some genetic variation. In addition, the genome of T. matsutake was sequenced using Illumina sequencing technology (RNA-seq). In all, a total of 24,549,990 reads were obtained that yielded 18,266,492 high-quality clean reads. The quality reads were excluded later. The BLAST analysis of the sequence reads against the NR database indicated that T. matsutake shared a high number of contigs with Laccaria bicolor. The results also indicated that catalytic activity, metabolic processes, metabolic pathways, and biosynthesis of secondary metabolites were the main functions identified by gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Phylogenetic analysis showed that T. matsutake growing in Sichuan differed from samples growing in other regions. The differences in secondary metabolites between the Sichuan and Xiaojin samples may be due to differences in metabolic pathways. Thus the study provides a foundation for understanding T. matsutake biogeography and origins, and identifies DEGs in the Xiaojin sample to help elucidate the molecular mechanisms in secondary metabolite synthesis.
Radioactivity and heavy metal toxicity of multi-metal deposits coexisting with the element uranium (U) could have long-term adverse impacts on soil biological processes and the health of soil ecosystems. Soil enzyme activities are considered bioindicators for assessing soil health. An experiment was designed to investigate invertase and ß-glucosidase activity in multi-metal deposits. Radioactivity and heavy metals were also investigated during this study. Our results showed that the invertase and ß-glucosidase activities were significantly lower in the core mining area than the control area (p<0.05). Activities of the two enzymes decreased with increasing metal concentrations and radioactivity. Cu and Zn showed significant negative effects on ß-glucosidase and invertase activities in a multi-metal deposit at the study site. A significant nonlinear relationship was recorded between soil enzyme activities, radiation dose (R² = 0.71, 0.63; p<0.05), Zn (R² = 0.34, 0.41; p<0.05) and Cu concentrations (R² = 0.46, 0.45; p<0.05). There were turning points at 1 μGy h⁻¹, 250 μg g⁻¹, and 30 μg g⁻¹ for radiation dose, Zn and Cu contents, respectively. The findings could provide more information regarding the toxic effects of radiation and heavy metals on the soil health of multi-metal deposits, which can more precisely guide environmental protection.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.