Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Antiviral drugs have demonstrated significant therapeutic potential against phytoviruses, such as inosine monophosphate dehydrogenase inhibitors like mycophenolic acid or thiopurines. However, drug delivery across cellular barriers is a challenging task that calls for investigation. In this study, membrane transport of three antiviral drugs such as mycophenolic acid (MPA), 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) was investigated in order to determine the mechanism involved in transmembrane flux. Electrophysiological tests were carried out on leaves of in vitro grapevine explants naturally infected by Grapevine leafroll associated virus 1 as well as virus-free explants treated with antiviral drugs. Results indicate that membrane electrical responses of the tested antiviral dugs are supported by the metabolism, and virus infection did not cause differences in membrane potential tests. The extent of depolarization was slight for MPA and 6-TG and greater for 6-MP. Complete repolarization always occurred and, in many cases, the electrical potential was greater than the starting level (overshoot). Treatments at 5 °C or in presence of CCCP, an uncoupler of oxidative phosphorylation, led to inhibition of drug effects of the membrane potential, suggesting a metabolic dependence of the transport. However, treatments carried out under sodium orthovanadate, a specific inhibitor of H⁺-ATPase, prove, although only partially, the activity of a proton pump. The complex of electrophysiological tests highlights that drugs such as MPA, 6-MP and 6-TG, when applied to infected or healthy grapevine leaf segments, lead to clear, biphasic, electrical membrane response suggesting an operation of H⁺ co-transport through systems that link substrate translocation across the membrane to the free energy available in a proton electrochemical potential difference.
To evaluate the role of purines in antiviral treatments in plants, ribavirin (RB) and tiazofurin (TZ) were applied in combination with guanosine (GS) or adenosine (AS) in in vitro grapevine or tobacco explants infected by Grapevine leafroll associated virus 3 (GLRaV-3) and Cucumber mosaic virus (CMV), respectively. Using a microelectrochemical (trans-plasma membrane electron transport, t-PMET) technique, in vivo assay of free reduced nicotinamide adenine dinucleotide (NADH) was also carried out to estimate the inosine monophosphate dehydrogenase inhibition caused by drugs. Antiviral effectiveness of TZ, evaluated as virus-free explants or virus copies, was significantly hindered by GS in both species, while AS did not interfere with the drugs. GS, but not AS, slightly hindered the antiviral effectiveness of RB. With regard to NADH tests, t-PMET inhibition caused by RB and TZ was dose dependent and the interference of drugs with the NAD+/NADH conversion was confirmed by NADH content. Findings indicate that exogenous GS up to 0.50 mM replenished the GS pool depleted by drugs, contrasting antiviral action. At higher doses of GS, the TZ antiviral action was completely inhibited and exogenous GS caused a feedback that reduced t-PMET activity. The reversal was partially against RB, suggesting that the reduction of the GS pool contributed to the antiviral activity of RB, but it was not the only cause of antiviral effectiveness.
The trans-plasma membrane behavior in virus-infected grapevine leaves was investigated and the effects of six viruses included in European and Italian certification protocols of grapevine on trans-plasma membrane potential (t-PMEP) or electron transport (t-PMET) activity were evaluated. Electrophysiological tests were carried out on leaf samples of virus-infected Vitis vinifera cv. Sangiovese. Microelectrodes were placed in the central zone of the mesophyll for membrane potential measurement, while carbon fiber microelectrodes were used to estimate the membrane reductase activity of virus-infected resting cells. Viruses, the presence of which increased the NADH content, interfere differently with t-PMEP and t-PMET. Those that did not interfere negatively with membrane potential caused an increment in cell reductase activity, while virus-infected samples which showed a stressed status—as suggested by low energy availability and difficulty in the impalement procedure—were characterized by a lower t-PMET activity despite NADH content.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.