Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In developing countries, good-quality water is contaminated due to the disposal of untreated municipal and industrial wastewater (WW) into natural water reservoirs. Most of the wastewater is not treated properly according to international standards, and usually is disposed of and/or utilized for irrigation without appropriate treatment. The main hurdles in providing wastewater treatment (WWT) in developing countries include high costs, and the poor design, installation, and operation of conventional WWT systems. Therefore, the present study explores the maize cobs trickling filter-based (MCTF) low-cost WWT option for developing countries like Pakistan, India, and Bangladesh. In this regard, indigenous media trickling filter was designed and developed using maize cobs as packing material for biofilm growth. The MCTFWWT system was continually operated and monitored for six months at constant hydraulic wastewater loading of about 113±2 m3 per m2 per day. The experimental data covers winter and summer seasons with temperature variations from 23ºC to 43ºC. System performance was evaluated by means of various WWT parameters, including biological and chemical oxygen demands (BOD5 and COD), total suspended and dissolved solids (TSS and TDS), turbidity, and color – before and after WWT. Experimental results showed that the MCTF-WWT system successfully removed about 79% BOD and 75% COD on average. The key reason for effective BOD and COD removal was rapid development of microbial film (within the first two weeks). Furthermore, the MCTF-WWT system removed 42-46% TSS, 28-30% TDS, 43-46% turbidity, and 33-37% color. The study concludes that the MCTF-WWT system is an effective and economical WWT option for irrigation/agricultural applications in developing countries.
This study combines air pollution tolerance index (APTI) and anticipated performance index (API) in order to determine the potential of trees and ornamental shrubs that are frequently growing on the roads of Quetta, Pakistan, and the campus of the University of Balochistan, in Quetta, for green belt development. Our investigation exposed that not only APTI is suitable for the fitness of trees for building green belts. It is used to categorize vulnerable plant species for only bio-monitoring. The grouping of APTI and API in the present study is a practical technique for decreasing air pollution control. Laboratory analysis for APTI was carry out by the four physico-biological factors such as leaf extract pH, total chlorophyll content, ascorbic acid content, and relative water content. API for different plant species (trees and ornamental shrubs) was determined depending upon the characteristic grading by allotted + or – to the plants. The standard for determining API is given in Table 2. For examining the relationships among these factors statistics were utilized. This study indicated that the APTI is used as an instrument for choosing suitable plants to reduce environmental urban heat. API designated that Morus alba L., Pinus halepensis Miller, Ficus carica L., and Pistacia vera L. with API = 6 are excellent performers for green belt development. Morus nigra L. and Malus pumila Miller had API 5 and are considered very good performers, and Fraxinus angustifolia Vahl., Prunus armeniaca L., and Platycladus orientalis L. showed 4 API values with good performance for green belt formation. All the other remaining investigated trees and ornamental shrubs demonstrated poor values of API and are not recommended for green belts as they act as bio-indicators. Data also exhibited that all the examined trees had higher API values then the ornamental shrubs. This study suggested that the integration of both APTI and API of plants is extremely beneficial for the construction of green belts.
Water pollution has become a major environmental concern for public and environmental health in developing countries. Water resources are being contaminated mainly due to mixing of domestic, municipal, and industrial wastewaters. The wastewater management and treatment situation is deplorable mainly because of financial constraints, the unavailability of technically trained human resources, and electricity shortages. Moreover, there is a challenge for the scientific community and wastewater management experts to explore cost-effective, simple, reliable, and efficient wastewater treatment systems. Therefore, the present review highlights the option of trickling filter (TF) systems for wastewater treatment in developing countries like Pakistan, India, Bangladesh, and African regions, etc. In addition, the solutions to the operational/performance issues of the TF system are explored and discussed in greater detail for designing/construction of new TF systems and retrofitting the existing TFs.
In the present research, a “green” recipe was used to produce innovative phytogenic magnetic nanoparticles (PMNPs) from leaf extract of Fraxinus chinensis Roxb without employing any additional toxic surfactants as capping agents. The convenient reaction between metal salt solution and plant biomolecules occurred within a few minutes by color changes from pale green to intense black, hinting at the production of magnetic nanoparticles (MNPs). The formation of PMNPs was verified by employing different techniques such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The fabricated PMNPs were further utilized as a catalyst for removing toxic dyes, i.e., Crystal violet (CV) and Eriochrome black T (EBT) from aqueous solutions in the presence of hydrogen peroxide (H2O2). The concentrations of CV and EBT were calculated using ultraviolet-visible (UV-vis) spectroscopy throughout all the experiments. The results indicated that PMNPs showed >95% removal of both dyes within 10 min of contact time over a wide range of concentration, 10-300 mg/L. The degradation kinetics were also investigated using first- and second-order rate equations, and the results indicated that kinetic data of both CV and EBT followed first-order degradation rate. Moreover, the removal efficiency of the fabricated PMNPs was alsocompared with chemically synthesized magnetic nanoparticles (CSMNPs), and the results indicated that our fabricated PMNPs were more effective in terms of extent and speed to remove dyes. Finally, we have also proposed a possible removal mechanism. Altogether, the developed “green” recipe can easily be implemented to produce potentially biocompatible and non-toxic PMNPs for treatment of wastewater and can also easily be employed in low-economy countries.
Bisphenol A (BPA) is an emerging environmental pollutant with potentially toxic effects on living organisms. The present study was undertaken to analyze the effects of BPA on the leaves of Arabidopsis thialina by determining the levels of photosynthetic pigments, reactive oxygen species (ROS), membrane lipid peroxidation, and ultrastructural malformation. The obtained results revealed that while a low dose of BPA (10μM) did not alter the test indices significantly, it did cause significant changes in all test indices at higher concentrations. Upon exposure to 40 μM BPA, chlorophyll a and chlorophyll b content showed a decrease of 33% and 30%, respectively. It significantly increased ROS contents and lipid peroxidation at 40 μM BPA exposure. Biochemical and gene expression analysis revealed that the antioxidant system was activated and mounted a defense against BPA-induced ROS. In the case of superoxide dismutase (SOD), 40 μM of BPA caused an increase of 151%. However, the malfunctioning of ascorbate peroxidase (APX) and catalase (CAT) at the highest dose of BPA (40 μM) resulted in incomplete activation of the antioxidant defensive system. BPA stress significantly altered the ultrastructure of cells as evidenced by the reduced number of starch grains, damaged chloroplast and mitochondria, and altered leaf epidermal surface, guard cells, and stomata. It is concluded that observed adverse effects in Arabidopsis leaves in response to BPA exposure could be attributed to BPA-induced oxidative stress.
In this study we investigated the projections of climate change and its impacts on the water resources of the Xin’anjiang watershed and optimal hydropower production using future run-offs (the decades of the 2020s, 2050s, and 2080s). The arc SWAT hydrological model and change factor downscaling technique were integrated to detect the run-offs and to downscale CMIP5 future climate variables, respectively. Optimal hydropower generation using future runoff was predicted by developing a mathematical model and by applying the particle swarm optimization technique within its paradigm. The results depict an increase of up to 5.9ºC in monthly mean maximum temperature, and 5.58ºC in minimum temperature until the 2080s. There will be a 63% increase in flow magnitudes more than the base year flow during the 2020s, whereas up to 70% and 31.40% increments have been observed for the 2050s and 2080s, respectively. The results revealed potential hydropower generation of 19.23*10⁸ kWh using 2020s runoff of rainy years. Similarly, 19.35*10⁸ kWh and 14.23*10⁸ kWh were estimated from the flows during the 2050s and 2080s, respectively.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.