Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
100%
Numerous paleontologists have noted wear facets on tyrannosaurid lateral teeth over the past century. While several workers have proposed explanations for these features, there remains to this day no consensus concerning their etiology. Here we report on an examination of wear surfaces on these teeth from the Upper Cretaceous (mid−Campanian) Judith River Group of southern Alberta, Canada. This study reveals two distinct types of wear features on the labial and lingual sides of tyrannosaurid lateral teeth: irregular “spalled” surfaces and wear facets. The irregular spalled surfaces typically extend to the apex of the tooth, which evidently reflects flaking of enamel resulting from forces produced during contact between tooth and food. These surfaces are often rounded, presumably from antemortem wear following spalling. Wear striations on these surfaces are oriented heterogeneously. The wear facets, in contrast, occur on only one side of the tooth and are typically elliptical in outline and evince parallel wear striations. Similar patterns of parallel wear striations in extant mammals reflect tooth−tooth contact. We therefore propose that wear facets in tyrannosaurids were formed by repeated tooth−tooth contact between the lingual side of maxillary teeth and labial side of dentary teeth. It remains unclear whether this contact was serendipitous or adaptive, though it appears to be unusual for reptiles, as we have found no evidence for wear facets in extant varanids and crocodilians.
Hyaenids reached their peak diversity during the Mio−Pliocene, when an array of carnivorous species emerged alongside dwindling civet−like and mongoose−like insectivorous/omnivorous taxa. Significantly, bone−cracking morphological adaptations were poorly developed in these newly−emerged species. This, their general canid−like morphology, and the absence/rarity of canids in Eurasia and Africa at the time, has led researchers to hypothesise that these carnivorous Mio−Pliocene hyaenas were ecological vicars to modern canids. To shed further light on their diets and foraging strategies, we examine and compare the dental microwear textures of Hyaenictitherium namaquensis, Ikelohyaena abronia, Chasmaporthetes australis, and Hyaenictis hendeyi from the South African Mio−Pliocene site of Langebaanweg with those of the extant feliforms Crocuta crocuta, Acinonyx jubatus, and Panthera leo (caniforms are not included because homologous wear facets are not directly comparable between the suborders). Sample sizes for individual fossil species are small, which limits confidence in assessments of variation between the extinct taxa; however, these Mio−Pliocene hyaenas exhibit surface complexity and textural fill volume values that are considerably lower than those exhibited by the living hyaena, Crocuta crocuta. Dental microwear texture analysis thus supports interpretations of craniodental evidence suggesting low bone consumption in carnivorous Mio−Pliocene hyaenas.
The extant venomous Gila monster and beaded lizards, species of Heloderma, live today in southwestern USA and south along the Pacific coastal region into Central America, but their fossil history is poorly understood. Here we report helodermatid osteoderms (dermal ossicles) from the late Miocene–early Pliocene Gray Fossil Site, eastern Tennessee USA. Twenty−three species of mammals are known from the fauna including abundant Tapirus polkensis, as well as fishes, anurans, salamanders, turtles, Alligator, birds, and snakes. Beaded lizards belong to the Monstersauria, a clade that includes Primaderma + Paraderma + Gobiderma + Helodermatidae (Estesia, Eurheloderma, Lowesaurus, and Heloderma). Osteoderms of lizards in this clade are unique within Squamata; they typically are circular to polygonal in outline, domed to flat−domed in cross−section, have a vermiculate surface texture, are not compound structures, and do not have imbricate surfaces as on many scincomorph and anguid lizards. We review and characterize the osteoderms of all members of Monstersauria. Osteoderms from the cranium, body, and limbs of Heloderma characteristically have a ring−extension (bony flange) at least partly surrounding the dome. Its presence appears to be a key character distinct to all species of Heloderma, consequently, we propose the presence of a ring−extension to be an apomorphy. Three osteoderms from the Gray Fossil Site range from 1.5 to 3.0 mm in diameter, have the circular shape of helodermatid osteoderms with a domed apical surface, and have the ring−extensions, permiting generic identification. Macrobotanical remains from the Gray Fossil Site indicate an oak−hickory subtropical forest dominated by Quercus (oak) and Carya (hickory) with some conifer species, an understorey including the climbing vines Sinomenium, Sargentodoxa, and Vitis. Plant and mammal remains indicate a strong Asian influence.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.