Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chelant-induced phytoextraction is considered an ideal remedial technique for removing heavy metals from contaminated soils. However, it can increase the risk of adverse environmental effects due to increased metal mobilization and the persistence of both chelants and metal-chelant complexes for extended periods of time. This paper reviews the mechanism, potential risks, and optimization of chelant-induced phytoextraction of toxic metals from contaminated soils. The advantages and major drawbacks of phytoextraction, along with possible strategies to reducing the risks associated with chelant application, are reviewed. Moreover, the directions for future research on chelant-assisted phytoextraction are briefly discussed. The objective of this paper was to comprehensively review chelant-assisted phytoextraction, and it will provide an effective and safe remediation technology for heavy metal-contaminated soils.
To investigate how light quality influences tomato (Solanum lycopersicum L) seedlings, we examined changes in plant growth, chloroplast ultrastructure, photosynthetic parameters and some photosynthesis-related genes expression levels. For this, tomato plants were grown under different light qualities with the same photosynthetic photon flux density: red (R), blue (B), yellow (Y), green (G) and white (W) lights. Our results revealed that, compared with plants grown under W light, the growth of plants grown under monochromatic lights was inhibited with the growth reduction being more significant in the plants grown under Y and G lights. However, the monochromatic lights had their own effects on the growth and photosynthetic function of tomato seedlings. The plant height was reduced under blue light, but expression of rbcS, rbcL, psbA, psbB genes was up-regulated, and the ΦPSII and electron transport rate (ETR) values were enhanced. More starch grains were accumulated in chloroplasts. The root elongation, net photosynthetic rate (Pn), NPQ and rbcS and psbA genes expression were promoted under red light. Yellow light- and green light-illuminated plants grew badly with their lower Rubisco content and Pn value observed, and less starch grains accumulated in chloroplast. However, less influence was noted of light quality on chloroplast structure. Compared with yellow light, the values of ΦPSII, ETR, qP and NPQ of plants exposed to green light were significantly increased, suggesting that green light was beneficial to both the development of photosynthetic apparatus to some extent.
The morphological characters of Glossopelta tridens Maa et Lin, 1956 are redescribed. Illustrations of the adult, head, and other relevant structures are provided to help facilitate recognition of this sexually dimorphic and little-known species.
Agdistocoris kormilevi, a new species of ambush bugs from China, is described. The genus Agdistocoris Kormilev is recorded the first time from China. A key to the three species of the genus is provided. The holotype of the new species will be preserved in the Insect Collection of China Agricultural University.
Biochar’s production and application in soils has been suggested as a means of abating climate change by sequestering carbon while simultaneously providing energy and increasing crop yields. However, little is known about biochar’s effect on nitrification in alkaline soil. This study focused on the effect of wheat straw-derived biochar (0%, 2%, 5%, and 10%, w/w) on nitrification in a calcareous clay soil with an incubation experiment. Moreover, the variations of ammonia-oxidizing bacteria (AOB) amount, urease activity, pH, and inorganic nitrogen contents during the incubation and their relationships with potential nitrification rates were also explored. The results indicated that nitrification was enhanced by wheat straw-derived biochar and showed an obvious dose-response to biochar application rate. Generally, the potential nitrification rate increased with incubation time elapsing for all four treatments, which were in the ranges of 21.0-33.9, 23.7-45.1, 21.4-57.5, and 31.8-66.1 nmol N/(g dry soil∙h), respectively. The potential nitrification rate increased by 1.36-2.40 times at 10% biochar application rate compared with the control (0%) at the same incubation stage. Except for NH₄⁺-N content of the soil-biochar mixture, AOB amount, urease activity, pH, and NO₃⁻-N content all showed increasing trends during incubation. Moreover, correlation analysis indicated that the potential nitrification rate was positively correlated with AOB amount, urease activity, pH, and NO₃⁻-N content (r≥0.713, P<0.01), but negatively correlated with NH₄⁺-N content (r = -0.408, P<0.01). Notably, though the biochar application in the Loess Plateau region has more benefits for soil condition improvement, the enhanced nitrification induced by biochar may pose a negative effect on fertilizer bioavailable efficiency in the agricultural system.
Foliar nutrient resorption is an important strategy which allows leaf nutrients to be reused rather than lost with leaf fall, particularly in nutrient-poor ecosystems where even small nutrient losses can have significantly negative impacts on plant survival, competitive ability, and fitness. However, plants vary greatly in nitrogen (N) and phosphorus (P) resorption among plant growth forms during leaf senescence, which may be vital to understand the role of plant growth forms in ecosystem functioning. Green and senesced leaf N and P concentrations of 39 plant species in sandy grassland (Horqin Sand Land) of northern China were analyzed to detect variations of nutrient resorption efficiency among plant growth forms. The results showed that nitrogen resorption efficiency (NRE) ranged from 29% to 74%, with an average (± SD) of 50.3 ± 11.2%, and phosphorus resorption efficiency (PRE) varied among species between 46% and 82%, with a mean (± SD) of 68.4 ± 6.9%, suggesting that nutrient resorption is a vital nutrient conservation strategy in this ecosystem. In addition, NRE and PRE differed significantly among the dominant plant growth forms in this sandy grassland. NRE for N-fixing species and graminoids were significantly lower relative to NRE for shrubs and forbs, but mean PRE of graminoids was significantly higher than those of N fixers, shrubs and forbs. These data give indirect evidence that the differentiation of N and P conservation serve as an important mechanism permitting the co-existence of growth forms in arid systems.
Groundwater vulnerability assessments, using DRASTIC, are important and useful tools for groundwater pollution prevention and control. The DRASTIC method, however, is not appropriate for accurate specific vulnerability assessments where nitrate concentrations are high. A new method has been developed that retains the basic structure of DRASTIC while adding or subtracting parameters, and modifying the parameter ratings and weightings. The resulting DRACILM model was used to assess vulnerability to nitrate pollution in the West Liaohe Plain and as a basis for vulnerability mapping. The accuracy, appropriateness, and reliability of the vulnerability mapping were analyzed using a group of integrated indicators, such as correlation, ANOVA F-statistics, and single-parameter sensitivity analysis. The correlation between vulnerability class and the concentration of NO₃-N in the DRACILM model improved to 0.649, which was 40.6% higher than that obtained by DRASTIC. The ANOVA F-statistic was 27.71, which indicated a lower overlap between the mean values of nitrates in the different vulnerability classes. The single-parameter sensitivity analysis revealed that land use type exhibited the highest and hydraulic conductivity the lowest effective weighting values. The vulnerability maps by DRACILM model could assist planners and government decision-makers with preliminary investigations into planning water protection projects or establishing management scenarios for water resource quality.
Leaf and petiole explants of Epipremnum aureum ‘Marble Queen’ were cultured on Murashige and Skoog basal medium containing three concentrations of either N-(2-chloro-4-pyridl)-N’-phenylurea (CPPU) or N-phenyl-N’-1, 2, 3-thiadiazol-5-ylurea (TDZ) with 1.07 µM α-naphthalene acetic acid (NAA). Somatic embryos appeared directly from explants after 4–6 weeks of culture. TDZ at 4.54 µM with 1.07 µM NAA induced 75% of leaf explants to produce somatic embryos and 62.5% of explants to produce germinated embryos. Both 8.07 µM CPPU and 9.08 µM TDZ, respectively, with 1.07 µM NAA induced 100% of petiole explants to produce somatic embryos and 78.1 and 91.7% of explants to produce germinated embryos. Plantlets with completely green, variegated, and whitish leaves were identified among regenerated individuals. Some variegation patterns differed greatly from the parent ‘Marble Queen’ within the variegated plants. Flow cytometry analysis of stock plants and selected variants showed that all plants had one identical peak. Analysis of simple sequence repeats amplified from 14 universal chloroplast primer pairs showed no variation between stock plants and selected variants. RT-PCR analysis of EaZIP, a marker gene involved in leaf variegation of E. aureum ‘Golden Pothos’, suggested little expression difference between green and whitish plants or between green and whitish sectors of a variegated leaf. However, SDS-PAGE analysis of proteins showed differences in band intensity and patterns. These results suggest that mechanisms underlying leaf variegation of ‘Marble Queen’ differ from the closely related ‘Golden Pothos’. The established regeneration system and identified variants could be important materials for further investigation of leaf variegation in E. aureum.
The quantification of biomass carbon pools is important for understanding carbon cycling in forest ecosystems. This study was designed to reveal the effects of stand age on biomass partitioning and carbon storage of Chinese fir plantation stands in Dabie Mountains of Anhui, East China. A total of six even-aged Chinese fir plantation stands along an age-sequence from 10 to 50 years were selected. To quantify the biomass of different tree components, 18 trees with diameter at breast height (D1.3) from 6.5 to 35.2 cm were harvested from the different aged stands. Biomasses of understory vegetation, forest floor and standing dead trees were also investigated. Total biomass carbon storages ranged from 57.6 to 211.4 Mg ha–1 in the different aged stands. Tree layer comprised from 93.7% to 96.4% of the total biomass C pools in the different aged stands. The C pools of the necromass were from 1.8 to 6.2 Mg ha–1. Stand age had a significant effect on tree biomass partitioning, with an increase in proportion of root biomass. The root/shoot ratios were from 0.187 to 0.312, which was significantly positively correlated to stand age. The existing plantation stands are still developing and have somewhat high rate of biomass and carbon accumulations beyond the normal rotation period (usually 25–30 years) even over an age of 50 years. Appropriate prolongation of the rotation period of Chinese fir plantation will be effective in maintaining long-term productivity and providing large carbon sink. The measurements provide valuable data for modelling productivity of Chinese fir plantation forest.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.