Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We have identified two types of invertases, one bound ionically and the other covalently to the particulate fraction in grains of heat tolerant C 306 and heat susceptible WH 542 cultivars of wheat (Triticum aestivum L.). The cell walls contained a high level of invertase activity, of which 79.2–72.8% was extractable by 2 M NaCl and 14.9–21.1% by 0.5% EDTA in C 306 and WH 542, respectively. The NaCl-released invertase constituted the predominant fraction. Using 5–100 mM sucrose and pH range of 4.0–7.0, the apparent Michaelis constant (Km, enzyme substrate affinity measure) of enzyme ranged from 5.73 to 16.06 mM for C 306 and from 6.08 to 19.86 mM for WH 542. The Vmax (maximum catalytic rate) values at these pH were higher in C 306 (0.63–11.04 µg sucrose hydrolysed min⁻¹) than WH 542 (0.51–8.73 µg sucrose hydrolysed min⁻¹). By employing photo-oxidation and by studying the effect of pH on Km and Vmax, the involvement of histidine and α-carboxyl groups at the active site of the enzyme was indicated. The two cultivars also showed differential response in terms of thermodynamic properties of the enzyme i.e. energy of activation (Ea), enthalpy change (ΔH) and entropy change (ΔS). NaCl-released invertase showed differential response to metal ions in two cultivars suggesting their distinctive nature. Mn²⁺, Cu²⁺, Hg²⁺, Mg²⁺, Zn²⁺ and Cd²⁺ were strong inhibitors in WH 542 as compared to C 306 while K⁺, Ca²⁺ were stimulators in both the cultivars. Overall the results suggest that genetic differences exist in wall bound invertase properties of wheat grains as evident in its altered kinetic behaviour.
Sugarcane is a highly productive crop plant with the capacity of storing large amounts of sucrose. Sucrose accumulation in the stem of sugarcane has been studied extensively. The initial recognition and characterization of the enzymes involved in sucrose synthesis and cleavage led to the widely accepted models of how sucrose accumulation occurs in the storage tissue. New insights were gained into the physiological role of individual enzyme activities in the process of sucrose accumulation in sugarcane. Studies on cell cultures and on isolated cell fragments initially supported and strengthened these models, but more recent research has revealed their weaknesses. A dynamic model of rapid cycling of sucrose and turnover of sucrose between vacuole, metabolic and apoplastic compartments explains much of the data, but the details of how the cycling is regulated needs to be explored. Genomic research into sucrose metabolism has been based on the premise that cataloging genes expressed in association with the stalk development would ultimately lead to the identification of genes controlling the accumulation of sucrose. Considerable progress has been made in understanding and manipulating the sugarcane genome using biotechnological and cell biology approaches. Thus, the greater understanding of physiology of sucrose accumulation and the sugarcane genome will play a significant role in the future sugarcane improvement programs and will offer new opportunities to develop it as a new-generation industrial crop.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.