Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The effects of different NaCl concentrations (0.1, 0.2, and 0.4%) on plant growth, the enzymatic antioxidant system, lipid peroxidation, and cell damage were investigated in Salix matsudana Koidz to better understand the tolerant mechanism under NaCl stress. The results indicate that cell damage was induced in roots by NaCl stress as early as after just 1 h of exposure, which increased with increasing NaCl concentration and prolonged treatment. The activities of SOD, POD, and CAT in S. matsudana under NaCl stress were enhanced except for the SOD activity in leaves under 0.4% NaCl at day 28, and CAT activities in leaves exposed to 0.4% NaCl on days 21 and 28. NaCl exposure caused increasing O₂⁻ and H₂O₂ contents. The MDA content in roots exposed to 0.2 and 0.4% NaCl increased except for that in 0.2% NaCl on day 14 compared with control. The MDA level in leaves of control was lower than that of all NaCl treatments. The soluble protein contents in roots increased significantly (P<0.05), except for that 0.1% NaCl during days 21 to 28. It increased significantly in leaves exposed to 0.4% NaCl, but decreased sharply at day 28.
Mixed pharmaceutical wastewater contains high levels of chemical oxygen demand (COD) and high concentrations of toxic and harmful substances. A conventional wastewater treatment process cannot treat this wastewater sufficiently to meet discharge standards. Therefore, mixed pharmaceutical wastewater treatment is a serious challenge to wastewater management. In this study, a full-scale combined anaerobic/ oxic (A/O) and biological filtration oxygenated reactor (BIOFOR®) process was used to treat the mixed pharmaceutical wastewater. The objectives were to evaluate the removal efficiency of the combined A/O+BIOFOR process on mixed pharmaceutical wastewater and to examine the bacterial community structures in process. The results showed that the effluent concentration of COD, NH₄⁻N, and SS could meet the Chinese mission standard of water pollutants for the pharmaceutical industry mixing/compounding and formulation category (GB21908-2008). MiSeq sequencing data showed that the two systems (A/O and BIOFOR) harbored different bacterial diversity and communities. In phylum level, candidatedivision-TM7 was the most predominant phylum in the A/O system, while Proteo bacteria was the most dominant phylum in the BIOFOR reactor. At the genus level, 126 genera were unique in A/O or BIOFOR reactors. The results of this study provided insights into the bacterial community structure and diversity in pharmaceutical wastewater treatment system and can provide reference for the treatment of mixed pharmaceutical wastewater.
The toxic effects of Cd on microtubule (MT) organization in root tip cells of S. matsudana were investigated in the present study using tubulin immunolabeling and fluorescence microscopy. Cell damage and expression level of the SmTUA1 gene in the root tips were also examined by means of propidium iodide (PI) staining and quantitative real-time PCR (qRT-PCR) technology. The MT arrays were very sensitive to Cd. At interphase, under 50 μmol/L Cd treatment for 48 h, some cortical MTs were discontinuous, inducing numbers of differently sized fragments. With increased Cd concentrations and duration of treatment, peripheral MTs appeared to be broken gradually, and the degree of disorder was enhanced. Spindle fibers even formed condensed MT at 10 μmol/L Cd for 48 h. During anaphase/telophase, there was a small part of MT absent, MT fibers were stuck to each other (even forming lumps) and could not form phragmoplast at 50 μmol/L Cd for 48 h. The cell damage of S. matsudana root tips increased with enhanced Cd concentrations and prolonged treatment time. Expression level of SmTUA1 analyzed by qRT-PCR further validated the results by indirect immunofluorescence staining. The data obtained here will be very useful to understand the mechanisms of Cd-induced cell toxicity.
Salix matsudana Koidz was exposed to different concentrations of Cd (0, 10, 50, and 100 µmol/L) to study the effects of Cd on mineral metabolism and antioxidant enzyme activities. The results showed that plant height and root length were inhibited by 50 and 100 µmol/L Cd, except the one under 10 µmol/L Cd treatment. The Cd content accumulated in different organs of S. matsudana, gradually increasing with increased Cd concentrations and prolonged treatment times. The root was the main organ for absorbing and accumulating Cd. Cd inhibited the accumulation of Fe, Zn, Mn, and Cu. In addition, the activities of antioxidant enzymes and the contents of reactive oxygen species were also changed by different concentrations of Cd. The results obtained here can provide scientific and objective data for the use of S. matsudana in the remediation of Cd-contaminated soil.
Degradation of shrub meadows and reclamation of alpine meadows may heavily affect the soil sink for atmospheric methane (CH₄), but this is poorly understood. Therefore, in situ measurements of atmospheric CH₄ consumption were conducted in four landuse types: natural alpine meadow (NM), Elymus nutans pasture (EP), herbaceous meadow in shrub (HS), and a P. fruticosa shrub meadow (PS) within two years. CH₄ fluxes were measured using static chambers and gas chromatography. All four types of land use showed atmospheric CH₄ sink throughout the two years, with mean soil CH₄ consumption rates at 24.6±10.9, 33.8±15.0, 39.8±10.3, and 28.1±12.1 µg CH₄·m⁻²·hr⁻¹ for NM, EP, PS, and HS, respectively. Soil CH₄ consumption increased by 40% by reclamation from NM to EP, while it decreased by 30% by degradation from PS to HS. Soil CH₄ consumption in four types of land use was significantly correlated with temperature at 5 cm depth (P<0.01) and the soil water-filled pore space (WFPS) (P<0.05). Temperature showed stronger effects on soil CH₄ consumption than WFPS, except in NM. UV radiation was positively correlated with soil CH₄ consumption with increasing temperature and decreasing soil moisture. These findings indicate that a decrease in the grazing pressure in shrub meadows and increase in the area of artificial pasture reclaimed from alpine meadows would enhance the CH₄ sink in alpine meadows on the Tibetan Plateau.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.