This review summarizes some of the recent findings concerning the long-held tenet that the enzyme, N-acetyltransferase, which is involved in the production of N-acetylserotonin, the immediate precursor of melatonin, may in fact not always control the quantity of melatonin generated. New evidence from several different laboratories indicates that hydroxyindole-O-methyltransferase, which O-methylates N-acetylserotonin to melatonin may be rate-limiting in some cases. Also, the review makes the point that melatonin's actions are uncommonly widespread in organs due to the fact that it works via membrane receptors, nuclear receptors/binding sites and receptor-independent mechanisms, i.e., the direct scavenging of free radicals. Finally, the review briefly summarizes the actions of melatonin and its metabolites in the detoxification of oxygen and nitrogen-based free radicals and related non-radical products. Via these multiple processes, melatonin is capable of influencing the metabolism of every cell in the organism.
In order to assess the aquatic ecosystem health in Yongjiang River, 13 sites from were sampled annually for density of individual phytoplankton species and community composition. Box-plots and Pearson correlation of 21 pre-selected metrics were then analyzed based on annual sampling and statistics data of the phytoplankton community. These metrics represent the characteristics of the phytoplankton community. Five of them were then used independently to evaluate the health of the aquatic ecosystem. It was found that the aquatic ecosystems’ health at all sampling sections in Yongjiang River was good. After calculating P-IBI values at each section and then comparing the values with the corresponding evaluation criteria, we found that the health at the upstream sections was better than the downstream sections.
This brief resume enumerates the multiple actions of melatonin as an antioxidant. This indoleamine is produced in the vertebrate pineal gland, the retina and possibly some other organs. Additionally, however, it is found in invertebrates, bacteria, unicellular organisms as well as in plants, all of which do not have a pineal gland. Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiency of other antioxidants. There may be other functions of melatonin, yet undiscovered, which enhance its ability to protect against molecular damage by oxygen and nitrogen-based toxic reac- tants. Numerous in vitro and in vivo studies have documented the ability of both physiological and pharmacological concentrations to melatonin to protect against free radical destruction. Furthermore, clinical tests utilizing melatonin have proven highly successful; because of the positive outcomes of these studies, melatonin's use in disease states and processes where free radical damage is involved should be increased.