Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This preliminary study tracks the response of living benthic foraminifera at a polluted site in eastern Bahrain, with the aim to determine the effects of recent anthropogenic pollution on their distribution patterns and morphological deformities. The boat harbor in Askar, Bahrain is subjected to pollution by nutrients, organic matter, and hydrocarbons. Foraminiferal density is found to be higher at the polluted site compared with a nearby unpolluted site, suggesting a possible higher amount of available nutrients for the benthic foraminifera. Seven taxonomical groups were recognized in the polluted transect, including Ammonia, Glabratellina, Murrayinella, Elphidium, Brizalina, miliolids, and peneroplids. By comparing the foraminiferal assemblages with a nearby unpolluted transect, the genus Murrayinella appeared to be a dominant and pervasive taxon, as it was able to proliferate in the organically polluted environment. The results are contradictory to previously published findings on modern foraminiferal assemblages in the Arabian Gulf, as Murrayinella is rarely reported. However, the population of miliolids was drastically reduced at the polluted site due to high organic matter pollution, which might support the sensitive nature of this taxonomic group. In any case, the miliolids can be considered as a pollution proxy for future biomonitoring studies in the region.
In the past 100 years, the annual global temperature has increased by almost 0.5ºC and is expected to increase further with time. This increase in temperature negatively affects the management of water resources globally as well as locally. Rain is an important phenomenon for agriculture, particularly in hilly areas where there is no feasible irrigation system. The present study is concerned with the analysis and modeling of the rain pattern, its variability, and prediction of monthly number of rainy days for the Abbottabad District, which is considered to be one of the greenest and most beautiful areas of Khyber Pakhtunkhwa, Pakistan, by incorporating both parametric and nonparametric techniques. Non-parametric statistical techniques are used for movement detection and significance testing; in this context, statistical tests were incorporated for inspection of homogeneity of rainy days among successive periods. A time series data for the period 1971-2013 was analyzed. Box Jenkins methodology and time series decomposition were applied for fitting the selected model, which was assessed for forecasting the monthly number of rainy days for 2015-2020. In this study several time series parametric and non-parametric approaches were applied to model rainfall data. The results showed that SARIMA (1, 0, 1) (0, 1, 1) was a better choice in predicting the monthly number of rainy days. Further analysis of the data suggests that January, March, May, July, and December have a considerable declining tendency in the number of rainy days.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.