Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  vermicomposting
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
100%
The present paper discusses the role of earthworms in recycling of sugar industrial wastes. The wastes generated from sugar industry are pressmud, bagasse, bagasse fly ash, sugar cane trash, sugar beet mud, sugar beet pulp, molasses etc. These wastes when mixed with other organic substrates become ideal mixtures for growth of earthworms. These wastes if stored in open field’s causes contamination in the environment and may cause several diseases in public health. But the governments have been unable to tackle the menace of solid waste pollution due to dearth of appropriate technologies, finance and space. Therefore, environment friendly and cost effective technologies for nutrient recycling or remediation of wastes are being advocated as an alternative means for conserving and replenishing natural resources of the ecosystems. Vermicomposting is one such technology that synergises microbial degradation with earthworm’s activity for reducing, reusing and recycling waste materials in a shorter span of time. Earthworm technology can convert sugar industrial wastes into valuable fertilizing material. The final product (vermicompost) produced during the process of vermicomposting is nutrient rich organic fertilizer with plant available nutrients such as nitrogen, potassium, calcium and phosphorus. In the present study an attempt has been made to document the role of earthworms in reuse of sugar industry waste.
One of the biomethods for organic waste utilization is the vermicomposting process, that is run with the use of dense populations of the Californian redworm {Eisenia foetida), whose role in the processes of prevention of soil degradation and organic waste recycling is well known. In recent years, shredded material from car tyres has been used more and more frequently for the hardening and filling of road embankments, which poses a hazard to the soil environment. Our paper attempts to demonstrate opportunities for the use of the red California hybrid (Eisenia foetida Sav.) in the bioutilization process of cis-1,4-polybutadiene rubber (BR) vulcanízate, which is a major component of car tyres. The basis for the study was a culture of Eisenia foetida on various beddings run over six months, as well as chemical and microscopic analyses using the Quanta 250 scanning electron microscope. The study has shown that the red California hybrid (Eisenia foetida Sav.) may be used in the bioutilization process of cis-1.4-polybutadiene rubber (BR) vulcanízate. Following the introduction of the butadiene rubber vulcanízate into the soil with the Californian hybrid, its complete decomposition occurs due to the redworm's trophic activity.
This work presents the dynamics of E. fetida (Sav.) earthworm populations during vermicomposting of duckweed (Lemna minor L.) biomass in small containers, and provides properties of the vermicomposts produced. An experiment was conducted under laboratory conditions (in darkness, at an average temperature 25±5oC, with substrate moisture 70-75%). Test pots (3 replications for each duckweed treatment) were filled with one litre of garden soil, into which 100 individuals of E.fetida, of known biomass, were introduced per pot. Duckweed was fed to earthworms regularly, in two treatments: (1) duckweed + + cattle manure (1:1), and (2) duckweed only. Earthworm number and biomass of tested populations were determined after 4 months of vermicomposting, and it was found that an average number of E.fetida in containers with duckweed and manure was 121±5 ind./container with a total biomass of 25.8±1.1 g. Populations in pure duckweed were significantly smaller (p<0.05), with 57±6 ind./container and a total biomass of 9.8±1 g. Cocoon production was also different across treatments. Populations in duckweed alone produced 55±13 cocoons /per container, significantly less (p<0.05) than the 231±37 cocoones when manure was added. Duckweed vermicomposts were odourless and had good granular structure. Chemical characteristics of both vermicompost types (with or without a manure supplement) were desirable. Content of macroelements in duckweed vermicomposts was high, whereas microelements, cadmium and lead were within the permitted levels, making these vermicomposts extremely useful in environmental reclamation, including agriculture. The manure addition was important for characteristics and chemical content of duckweed vermicomposts. The vermicomposts produced from duckweed and manure contained more ash, N, P, K, Mg, Zn, Cu, Ni, Cr, Cd and Pb.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.