Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  vacuolation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Helicobacter pylori (H. pylori) adheres to human gastric epithelial cells, eliciting various gastroduodenal diseases. Gangliosides play a critical role in bacterial adhesion to cell surfaces. The present study examined how residues of gangliosides are important for inhibition of adhesion of H. pylori to MKN-45 cells. We measured adhesion or detachment effects of gangliosides on the interaction between MKN-45 cells and H. pylori, as well as interleukin-8 production. Among the gangliosides, O-Ac-GD3, GT1b, GD1a, GD1b, GT1a, and GD3 had potent dose dependent inhibitory effects on adhesion of H. pylori to MKN-45 cells, interleukin-8 production, and vacuole formation induced by H. pylori toxin binding to Vero cells. GD3 also accelerated bacterial detachment of MKN-45 cells with adherent H. pylori in a dose dependent manner. Such results strongly suggest that the mechanism involved in the inhibition of H. pylori adhesion is mediated by the variations of the residues of the NeuAc-NeuAc-Gal-Glc chain of gangliosides. NeuAc-NeuAc-Gal-Glc exhibits a more inhibitory effect on adhesion than the NeuAc-Gal-Glc chain. Such gangioside and oligosaccrharide sequences appear to have therapeutic importance for prevention of H. pylori adhesion, as well as reduction of both inflammation and gastric mucosal injuries.
In F₂, F₃ and F₄ generations of one hybrid line of Lupinus varius × L. digitatus, segregation into infertile and fertile plants in the ratio 3:1 was observed. Cytoembryological analyses showed that sterility was caused by irregularities in megasporocyte formation, in megasporogenesis and megagametogenesis. The following abnormalities lead to female sterility: no megasporogenic cells separated in nucelluses; in other nucelluses with megaspore mother cells, these cells underwent vacuolation and died before reduction division. In the megaspore mother cells, in which probably meiosis occurs, the megasporocyte division is irregular; a restitution nucleus is frequently formed after reduction division and such megasporocyte develops into an embryo sac. In 8-nucleate embryo sacs a change in the nucellus polarization was observed, while in rarely encountered embryo sacs the embryo cells underwent vacuolation and then died. Female sterility in the studied segregants is determined genetically, whereas sterilization of reproduction cells is a developing process throughout the period of sporocyte and female gametophyte formation.
Vacuoles play very important physiological roles in plant cells. Pea root nodules, which exhibit distinct zonation (meristematic zone and central tissue zones), may serve as a good experimental model for the investigations of vacuole development and its importance to cell and tissue functioning. Moreover, the nodule central tissue is composed of both infected and uninfected cells which play different physiological roles and differ in the level of vacuolation. Cytological observations revealed that central vacuoles of the infected cells of the effective nodules expand toward cell walls. Thus only thin layers of the cytoplasm separate each central vacuole from plasma membrane and cell wall. This finding is discussed from the viewpoint of improved exchange of solutes and water between the central vacuole and apoplast of the infected cell. Three-dimensional reconstruction of the vacuoles of infected cells within a fragment of effective nodule central tissue, showed their spatial arrangement. Possible advantages coming from the spatial arrangement of vacuoles within the central tissue are discussed. A comparative study of the central tissue (bacteroidal tissue) and meristem vacuolation of the effective and ineffective pea root nodules is also presented. Morphometric measurements revealed that the effective nodule central tissue was more vacuolated than the ineffective one. It was proved that maturation of the infected cells involves dynamic changes in their vacuolation. Having numerous fixing nitrogen bacteroids, the infected cells of effective central tissue were less vacuolated than uninfected cells. On the other hand, both infected and uninfected cells of the effective central tissue showed a much higher level of vacuolation in nitrogen-fixing zone than cells of the same type in ineffective tissue. These results indicate that vacuolation is an important factor in development and functioning of pea root nodule central tissue.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.