Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  tolerance mechanism
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Desiccation-tolerant plants can be grouped into two categories: the 1) desiccation-tolerant plants whose internal water content rapidly equilibrates to the water potential of the environment and 2) the modified desiccation-tolerant plants that all employ mechanisms to retard and control the rate of water loss. Desiccation tolerance can be achieved by mechanisms that incorporate one of two alternatives, viz. cellular protection or cellular recovery (repair). The majority of plants probably utilize aspects of both. Desiccation-tolerant species, in particular the moss Tortula ruralis, appear to utilize a tolerance strategy that combines a constitutive protection system and a rehydration-inducible recovery mechanism. The rehydration-induced recovery mechanism of Tortula ruralis relies heavily upon a change in gene expression that is mediated by posttranscriptional events rather than the slower reacting transcriptional controls. Findings indicate that it takes a certain amount of prior water loss to fully activate the protein-based portion of the recovery mechanisms upon rehydration. Utilizing cDNAs representing individual hydrins (proteins whose synthesis is hydration specific) and rehydrins (proteins whose synthesis is rehydration specific), it was determined that if drying rates were slow rehydrin transcripts selectively accumulate in the dried gametophytes. Studies revealed that this storage involves the formation of mRNPs (messenger ribonucleoprotein particles). The identity and possible functions of the rehydrins of Tortula ruralis are also under investigation, in particular Tr155, a small rehydrin (24kD) appears to be involved in antioxidant production during rehydration.
This study was conducted to determine the correlation between of salinity stress on growth and phenolic compounds in rice. It was observed that salinity stress caused a significant decrease in shoot lengths, fresh and dry weights of all rice varieties. Under salinity stress, changes of chemical contents also differed among phenolic compounds and rice cultivars. Total phenolics and flavonoids, and contents of vanillin and protocatechuic acid in tolerant varieties were strongly increased, whereas in contrast, they were markedly reduced in the susceptible cultivar. Ferulic acid and p-coumaric acid were detected only in tolerance rice. Vanillin and protocatechuic acid may play a role, but ferulic acid and p-coumaric acid may be much involved in the tolerant mechanism against salinity stress. Ferulic acid and p-coumaric acid and their derivatives are potent to be exploited as promising agents to reduce detrimental effects of salinity stress on rice production.
Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to study the morphology and elemental composition of the conidia, phialids and hyphae of Penicillium brevicompactum grown in the presence of cobalt concentrations of 0, 50, 200, 500, 800 and 1000 ppm (mg/l). Cobalt uptake was through the hyphae, phialids and the conidia with maximum uptake being by the conidia at a concentration of 1000 ppm. EDX revealed the increase in the percentage of calcium and magnesium in the hyphae, conidia and phialids, compared to corresponding controls, accompanying the increase in cobalt uptake. Alternatively a decrease in sulfur percentage was observed. This study might reflect the possibility of using SEM-EDX as a new technique in understanding the mechanism of tolerance.
Robinia pseudoaccacia plants grown hydroponically were treated Pb(NO3)2 with 15, 45 mg Pb²⁺ ∙ dm⁻³. After 6, 12, 24, 72 hours of the metal treatment the plants were collected and dissected organs. The plants accumulated and transported to ground part 0.88% and 1.35% of total accumulated lead for the lower and higher dose of Pb²⁺ respectively. The level of GSH was differed and depended on organs, dose and time treatment of Pb²⁺. We investigate (different pattern of expression) expression of RpGSH1 and RpPCS genes in roots. The study showed that glutathione and genes encoded enzymes connected with synthesis of him, plays important role in the process of detoxification in plant.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.