Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  tissue function
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The acute-phase protein serum amyloid A (SAA) is present in the bloodstream at the concentration below 1 µM under physiological conditions, but its level increases significantly during the acute-phase response following infection or inflammatory condition. A consequence of the long-term elevated SAA concentration is deposition of normally soluble serum amyloid A in the form of insoluble fibrils, impairing tissue structure and function. These deposits cause development of a secondary type amyloidosis, called amyloid A protein (AA) amyloidosis, which results in a death of thousands of people per annum around the world. The ability of SAA to form amyloids seems to be connected with the N-terminal portion of the molecule. The capacity of the synthetic peptides derived from the N-terminal sequence of human or mice SAA to form fibrils in vitro proves that the most amyloidogenic region is embedded within the protein’s first 15 amino acids. We decided therefore to use peptides consisting of 11–15 amino acids and the sequence derived from the N-terminus of the parent aggregating protein as a research tool for investigation of the molecular recognition and self-assembly mechanisms that promote the formation of SAA amyloid fibrils deposits. In this study, we tested the hypothesis that non-aggregating very short peptides derived from SAA sequence would interact with the analogous region in the protein molecule or its aggregation-prone N-terminal fragment, and block its assembly into oligomers and amyloid fibrils. We designed and synthesized a peptide with the sequence 1RSFFS5, derived from the human SAA primary structure, and then tested it as a potential inhibitor of the aggregation process of SAA protein. The hypothesis about the role of aromatic interactions in amyloid fibril formation led us to test another peptide: 17LVFF20, which is derived from the sequence of Aβ. We tested propensity of the N-terminal segment (1–15) of mice SAA for amyloid fibrils formation, incubating it either alone or together with the potential inhibitors. Thioflavin T (ThT) fluorescence test was used to detect amyloid fibrils formation. These tests confirmed that the designed peptides are able to diminish propensity of the aggregation-prone SAA peptides to form amyloid fibrils. There are currently no effective medical treatment of diseases associated with the systemic amyloidosis. We believe that results of the presented project open up new possibilities in designing compounds that are able to prevent formation of amyloid deposits and could be a starting point for the design of peptidomimetic molecules more suitable as potential drugs. The work was supported by grant NCN nr 2011/03/N/NZ5/01460 and grant BMN No 538-8440-1042-12.
Adenosine is a product of complete dephosphorylation of adenine nucleotides which takes place in various compartments of the cell. This nucleoside is a significant signal molecule engaged in regulation of physiology and modulation of the function of numerous cell types (i.e. neurons, platelets, neutrophils, mast cells and smooth muscle cells in bronchi and vasculature, myocytes etc.). As part a of purinergic signaling system, adenosine mediates neurotransmission, conduction, secretion, vasodilation, proliferation and cell death. Most of the effects of adenosine help to protect cells and tissues during stress conditions such as ischemia or anoxia. Adenosine receptors and nucleoside transporters are targets for potential drugs in many pathophysiological situations. The adenosine-producing system in vertebrates involves a cascade dephosphorylating ATP and ending with 5'-nucleotidase (EC 3.1.3.5) localized either on the membrane or inside the cell. In this paper the cytoplasmic variants of 5'-nucleotidase are broadly characterized as well as their clinical relevance. The role of AMP-selective 5'-nucleotidase (cN-I) in the heart, skeletal muscle and brain is highlighted. cN-I action is crucial during ischemia and important for the efficacy of some nucleoside-based drugs and in the regulation of the substrate pool for nucleic acids synthesis. Inhibitors used in studying the roles of cytoplasmic and membrane-bound 5'-nucleotidases are also described.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.