Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  synthetic inhibitor
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Cysteine proteases (CPs) are responsible for many biochemical processes occurring in living organisms and they have been implicated in the development and progression of several diseases that involve abnormal protein turnover. The activity of CPs is regulated among others by their specific inhibitors: cystatins. The main aim of this review is to dis­cuss the structure-activity relationships of cysteine proteases and cystatins, as well as of some synthetic inhibitors of cysteine proteases structurally based on the binding frag­ments of cystatins.
DPI 201-107 (DPI), a diphenylpiperazinylindole derivative, was reported to be a cardio-selective modifier of voltage-gated Na+ channels. It remains unclear whether DPI has any effects on ion currents. The effects of DPI on ion currents and membrane potential in pituitary tumor (GH3) cells were investigated in this study. DPI (1-100 µM) suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a concentration-dependent manner with an IC50 value of 9.4 µM. The presence of DPI also enhanced the rate and extent of IK(DR) inactivation. Recovery from block by DPI (10 µM) was fitted by a single exponential. Crossover of tail currents during the exposure to DPI was also observed. Under current-clamp recordings, DPI prolonged action potential duration in GH3 cells. With a minimal binding scheme, DPI-induced block of IK(DR) was quantitatively provided. The exposure to DPI also blocked IK(DR) with a concomitant increase in current inactivation in NG108-15 neuronal cells. Taken together, the results imply that DPI acts as an open-channel blocker of delayed-rectifier K+ channels in these cells. The widening of action potentials induced by DPI in these cells may be explained mainly by its block of IK(DR) in a state-dependent manner.
Synthetic inhibitors of benzamidine type have been found to have inhibiting effects on arginine specific cysteine proteinases of P. gingivalis. The purpose of our study was to assess the effects of these inhibitors on the virulence properties of two P. gingivalis strains, the reference strain ATCC 33277 and JH16-1, a clinical isolate ob­tained from a patient with severe periodontitis. The inhibitors tested were pentami- dine, benzamidine, three bis-benzamidine derivatives with a pentamidine-related structure, one bis-benzamidine derivative with another structure, and one arginine derivative as a negative control, each in the concentrations of 2 uM and 20 uM. As vir­ulence criteria the following parameters were determined: arginine-specific amidolytic activity, growth inhibition, hemagglutination of sheep erythrocytes, adher­ence to KB cells and immuno-phagocytosis including intracellular killing. Pentami- dine and the bis-benzamidine derivatives with pentamidine-related structure showed the most remarkable effects on reduction of amidolytic activity by 35%, growth inhibi­tion and reduced hemagglutination. Except for the arginine derivative all other inhibi­tors tested enhanced the phagocytosis capacities of granulocytes. No clear influence of the inhibitors on adherence of P. gingivalis to KB cells was seen. Although in vitro effects of the synthetic inhibitors of cysteine proteinases on virulence of P. gingivalis were observed further in vitro tests concerning immunomodulatory effects should be done before these substances are used for therapy in clinically controlled studies.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.