Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  soil crusting
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Biological soil crusts (BSCs) have a vital role regarding vegetation and soil development in arid and semi-arid areas in the world, and apparently in Iran, where they comprise more than 85% of the land. In this research, the relationship between BSCs and plant functional groups, considering soil parameters along an arid alluvial fan located in Khorasan Razavi province in northeastern Iran, was examined. The sampling carried out in summer, systematically from apex towards base part of alluvial fan, using a 0.25 m² quadrat over a 5-cm thick soil surface. Surface levels were classified into three categories: apex, middle, and base. At each level, 16 samples were taken; in total 48 samples were collected along the alluvial fan from the apex point to the base district. The results showed a strong relationship between BSCs and the soil surface features, and a weak correlation between the plant functional group and soil parameters. BSCs indicated an ecological evolution from apex to the base geomorphic level by soil development; so that BSCs are more developed on the base of alluvial fan, but their diversity is reduced.
Moss crusts are the highest developmental stage of biological crusts in arid and semiarid ecosystems worldwide. Under natural conditions, elementary functional units of moss crusts are patches. However, to date, the quantitative features, distribution pattern, ecological effect and relationship with environmental factors of moss patches in desert ecosystems remain unclear. In this study, 3303 moss patches in 22 plots and relevant environmental variables were investigated and quantified in the Gurbantunggut Desert, China. Thirty-six patch classes were defined. Moss crusts accounted on average for 11.7% of the plot area, and the mean moss patch area was 23.4 cm². Small patches dominated, indicating a serious fragmentation of moss crusts. Significant density-dependent effects between patch density and size, humped relationships between patch size and moss plant density, and soil water content under moss patches were observed. The overall distribution of moss crusts showed a tendency of moss patch size and moss plant density decreasing from the southeastern part of the desert to the northwestern part, while moss patch density showed the opposite trend. Pearson's correlation analysis and nonmetric multidimensional scaling analysis consistently demonstrated that the distributions of moss patches were dominantly influenced by non-moss crust coverage, sand particle size, latitude, mean annual precipitation (MAP) and mean annual temperature. Of these parameters, fine sand, high MAP and low latitude were beneficial to the development of moss crusts. Consequently, the factors influencing the distribution pattern of moss crusts are complex and contain the soil factor, current climatic conditions and natural and human disturbances.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.