Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pomiary hydrometryczne
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Results of comparison of the average fl ow velocity in river cross-section, estimated on measurements carried out in the Zagożdżonka River and calculated from empirical formulas, are presented in the paper. Recognized that in case of the small natural river-bed conditions none of analyzed empirical formulas doesn’t perfectly fit the flow resistances variability. The mean relative error estimated for measured and calculated average velocities in the river cross-section are in range MRE = 13,6–17,5%.
Powierzchnia poddana analizom położona jest w północno-zachodniej części Polski na terenie województwa zachodniopomorskiego. Badania zlokalizowano w bliskim sąsiedztwie meteorologicznej stacji badawczej zarządzanej przez Katedrę Meteorologii UP w Poznaniu. Obszar znajduje się na terenie otuliny Drawieńskiego Parku Narodowego. Standardowe badania stosunków wodnych w lasach bazują na schemacie zlewniowym, który w zasadzie uniemożliwia oceny quasipunktowe (w oddziałach, czy pododdziałach leśnych). Dlatego do obliczania profilowego odpływu i zmian retencji zaproponowano pomiary stanów wód gruntowych w transektach spływowych oraz oznaczanie uwilgotnienia w strefie aeracji metodą TDR. Reflektometria Czasowo-Domenowa (TDR) stała się znaną i użyteczną metodą dla pomiarów zawartości wody w glebie i wielkości przewodności elektrycznej w latach 80-tych ubiegłego wieku poprzez opublikowanie serii artykułów Toppy, Daltona i innych. Reflektometria Czasowo-Domenowa (TDR) jest wysoce dokładną i dostosowaną do pomiarów automatycznnych metodą dla określania zawartości wody i przewodności elektrycznej. Zawartość wody jest wnioskowana na podstawie przenikalności dielektrycznej ośrodka, podczas gdy przewodność elektryczna jest wnioskowana na podstawie tłumienia sygnału TDR. Mieszane modele empiryczne i dielektryczne są używane dla ustalania relacji zawartość wody a przenikalność dielektryczna. Glina i materia organiczna wiążą znaczne ilości wody, tak że mierzona wielkość stałej dielektrycznej jest zmniejszana i zależności z całkowitą zawartością wody wymagają odrębnych kalibracji. W metodzie TDR przenikalność dielektryczna ośrodka (np. gleby) wyliczana jest na podstawie pomiaru prędkości propagacji impulsu elektromagnetycznego wzdłuż falowodu utworzonego z elektrod przewodzących prąd elektryczny, tworzących sondę pomiarową umieszczoną w badanym ośrodku. Przenikalność dielektryczna warunkuje prędkość propagacji w takim falowodzie. Zatem na podsta wie pomiaru prędkości propagacji impulsu elektromagnetycznego można ocenić wilgotność ośrodka.
W pracy przedstawiono wyniki pomiarów geodezyjnych i hydrometrycznych oraz obliczeń wykonanych w celu weryfikacji krzywej natężenia przepływu przekroju wodowskazowego IMGW w km 8+400 rzeki Dłubni. Wodowskaz ten, znajdujący się ponad 300 m poniżej zapory zbiorników wodnych w Zesławicach, umożliwia rejestrację stanów wód, będących sumą odpływu ze zbiorników i dopływu wód potoku Baranówka. Natężenie przepływu obliczono metodą Harlachera na podstawie danych hydrometrycznych i za pomocą wzoru Chézy’ego. Opierając się na uzyskanych wynikach pomiarów i obliczeń, opracowano krzywą natężenia przepływu, którą porównano z krzywą opracowaną w 1993 roku przez IMGW Oddział Kraków. Określona maksymalna przepustowość koryta w przekroju wodowskazu według opracowania IMGW wynosi 95,6 m3 · s–1. Natomiast określona w wyniku obliczeń wykonanych na podstawie pomiarów zrealizowanych w 2011 roku, maksymalna przepustowość przekroju wodowskazowego jest równa 88,1 m3 · s–1. Skorygowana, niższa przepustowość koryta Dłubni poniżej zbiorników wodnych powinna zostać uwzględniona w instrukcji eksploatacji zbiorników w zapisie dotyczącym zrzutu wód w trakcie wezbrania.
W pracy przedstawiono wyniki pomiarów geodezyjnych i hydrometrycznych oraz obliczeń wykonanych w celu opracowania krzywej natężenia przepływu przekroju Dłubni zlokalizowanego 810 m powyżej wlotu do zbiorników wodnych. Natężenie przepływu obliczono metodą Harlachera na podstawie danych hydrometrycznych i za pomocą wzoru Chézy’ego. Stwierdzono, że przepływy obliczone wg wzoru Chézy’ego są znacznie wyższe od określonych metodą Harlachera. Przy napełnieniach wynoszących 1,00 i 1,06 m przepływ obliczony wg wzoru Chézy’ego jest odpowiednio ponad pięciokrotnie i ponad półtorakrotnie wyższy od obliczonego na podstawie pomiarów hydrometrycznych. Wraz z napełnieniem różnica ta ulega zmniejszeniu. Przyczyną tak znacznych różnic w wynikach obliczeń natężania przepływu jest wpływ układu podłużnego dna koryta, zakłóconego oddziaływaniem mostu. Stwierdzono, że wykonanie pomiarów spadku dna cieku na dłuższym odcinku poniżej rozpatrywanego przekroju rzeki może wykazać ewentualny wpływ spiętrzenia przepływów strefy stanów niskich wynikający z układu podłużnego dna.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.