Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pathomechanism
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Microglial cells, through the proinflammatory mediators play an important role in host defense and tissue repair in CNS. They contribute to pathomechanisms of Alzheimer’s and other neurodegenerative diseases. The aim of this work was to investigate modifying effects of non-activated migroglia on cholinergic neuronal SN56 cells subjected to common neuroprotective and/or neurotoxic signals. Chronic exposure to Zn or SNP caused loss of viability (30%), inhibition of pyruvate dehydrogenase (PDH) (40%), isocitrate dehydrogenase (60 and 50%) and aconitase activities as well as decrease of acetyl-CoA levels. These alterations in enzyme activities displayed strong direct correlation with depletion of acetylCoA (r=0.86, P<0.0001) and inverse correlation with cell viability (r=0.87, P<0.0001). Resveratrol, free radical scavenger, increased viability of Zn/SNP treated cholinergic cells but did not overcome suppresive effects of SNP and Zn on enzymes activities. Under same neurotoxic conditions, N9 microglial cells cultured on isoporated inserts and added to neuronal culture dishes, also overcame neurotoxic effect Zn and SNP maintaining control levels of acetyl-CoA, enzymes activites and high cell viability. These data sugest that in some specific, pathologic conditions, non-activated microglia may protect neuronal cholinergic neurons against neurotoxic insults by paracrine-like mechanism by protecting their energy metabolism. On the other hand resveratrol neuroprotection may depend on entirely different yet undefined mechanism. Supported by GUMed MN-15, MNiSW NN401029937, IP2010035370, GUMed ST-57 projects.
During the conducted experiments the authors aimed at an explanation of pathogenesis of diarrheal disease of horses, called Colitis X. The effort of finding the most effective therapy and prevention of the disease was also undertaken.
Alpha-Synuclein (ASN), a small cytosolic protein enriched in synaptic terminals, was implicated in the pathomechanism of several neurodegenerative disorders called alpha-synucleinopathies. ASN was shown to be a main component of characteristic intraneuronal protein aggregates called Lewy bodies (LB) and Lewy neurites (LN), observed i.a. in Parkinson’s disease, dementia with LBs and in the LB variant of Alzheimer’s disease. Recent studies demonstrated that ASN may exist also in the extracellular space. Low-molecular ASN aggregates distributed in the brain parenchyma likely may be more toxic than ASN in LB, however, the exact mechanism of cytotoxicity of extracellular ASN is not fully understood. Our previous studies demonstrated the significant impact of extracellular ASN on calcium homeostasis. ASN evoked deregulation of intracellular calcium concentration leading in consequence to enhancement of nitric oxide synthesis. Deregulation of calcium homeostasis affects other calcium-dependent enzymes, including Calpains. The aim of the present study was to investigate the involvement of Calpaindependent activation of Cyclin Dependent Kinase 5 (Cdk5) in molecular mechanism of extracellular ASN cytotoxicity. The activation of Cdk5 is regulated by binding of regulatory subunits p35 and p39. Deregulation of calcium homeostasis may induce the Calpainmediated breakdown of Cdk5/p35 into Cdk5/p25 leading to overactivation of Cdk5. In our studies we used rat Pheochromocytoma PC12 cells incubated with exogenous ASN (10 µM) in the presence of Calpain inhibitor Calpeptin (10 µM) and Cdk5 inhibitors Roscovitine (10 µM) and BML-259 (10 µM). Our results indicated that incubation of PC12 cells in the presence of extracellular ASN (10 µM) for 48 h evoked cell death, and Cdk5 inhibitors efficiently prevented ASN toxicity, indicating an important role of Cdk5 in molecular mechanism of ASN toxicity. The level of Cdk5 protein was unchanged, but phosphorylation of Cdk5 at Tyr15 was significantly increased, suggesting that the enzymatic activity of Cdk5 is increased in ASN-treated cells. The presence of p25 protein was observed, what suggests that Calpain-dependent proteolysis of p35 occurred in ASN-treated cells. Calpeptin, an inhibitor of Calpains, prevented ASN-induced cell death, confirming the important role of Calpain activation in mechanism of ASN toxicity. In summary, our results demonstrated that alteration of calcium homeostasis evoked by extracellular ASN induce Calpain-dependent overactivation of Cdk5. These molecular processes may be involved in ASN-evoked cell death in vitro and probably also in neurodegenerative disorders.
Mitochondrial homeostasis, resulting from fusion and fission processes together with mitophagy and mitogenesis, are widely studied nowadays. This is probably because we know more and more about the role of mitochondria in metabolic diseases (diabetes, hypertension), neurodegeneration (Parkinson’s Disease, Alzheimer’s Disease), but also in broad spectrum of inherited neurological syndromes (CharcotMarie-Tooth). In our studies we aimed to examine the expression pattern of particular mitochondrial proteins, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), in mouse tissues. We aim to verify, whether potential differences in expression of those proteins can by implicated in pathomechanism of Charcot-Marie-Tooth type 2A neuromyopathy, related to mitofusion 2 gene mutations. Mitofusins are mitochondrial GTPases, implicated in fusion of outer mitochondrial membrane. In this process, mitofusins juxtapose two mitochondria by combining homo- and heterodimers at the surface of two outer mitochondrial membranes. Although there is 63% homology between mitofusins, it is proved, that they show some different functions. As Mfn1 KO present more severe aberrations in mitochondrial network formation than Mfn2 deficient cells, Mfn1 is considered to have stronger fusion activity. It is also suspected, that it is Mfn1 that links fusion of outer and inner mitochondrial membranes. Nevertheless, Mfn2, but not Mfn1, is present at endoplasmic reticulum (ER). Mfn2 tethers ER to mitochondria facilitating calcium flux and (indirectly) autophagy. Moreover, Mfn2 seems to have some regulatory effect on cell cycle, beyond its fusion activity and its lower expression seems to correlate with insulin resistance and hyper proliferation in hypertension. So, the question is, how much these two proteins can replace each other while playing so different roles? Moreover, it is suggested that CMT2A predominantly affects peripheral nerves because mutated, malfunctioned Mfn2 is insufficiently compensated by Mfn1 due to its low expression particularly in this type of tissue. To discuss this issue, we have investigated the expression of Mfn1 and Mfn2, as well as protein content, in tissues, performing Real Time PCR and Western Blot studies. Preliminary data from Western blot analysis displayed equally high relative level of both mitofusins in nervous system (dorsal root ganglia, cerebral cortex, cerebellum, spinal cord) in comparison to peripheral organs (muscle, heart, liver, kidney, skin). Moreover, Mfn1 expression seems significantly lower in dorsal root ganglia, which are well established model of peripheral nervous system. This phenomenon was not observed for other tissues, even from central nervous system. So it seems quite possible, that axonal damage of peripheral nerves in CMT2A, may be observed due to the poor compensation of dysfunctional Mfn2 by fully functional Mfn1, which is not expressed at sufficient level. The project was supported by NSC grant NN402474640
Stroke-induced inflammatory reaction leads to the accumulation of leukocytes in the brain ischaemic region, where they exert a detrimental effect - promotion and extension of cerebral damage. Intracerebral infiltration of peripheral blood leukocytes requires prior endothelial-leukocyte interactions that are mediated by such cell surface proteins as adhesion molecules. Among adhesion molecules, it is the immunoglobulin gene superfamily (IgSF) that is responsible for strong attachment and transendothelial migration of leukocytes. The principal members of IgSF are: intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1). In this review the following issues were described and discussed: an increased expression of ICAM-1 and VCAM-1 in ischaemic brain as well as a detection of their soluble(s) forms in sera of stroke victims. The presented data suggest the involvement of both ICAM-1 and VCAM-1 in the sequence and timing of the infiltration of leukocytes into the brain ischaemic zone after stroke. They have also revealed changes in serum concentrations of sICAM-1 and sVCAM-1 that are characteristic for stroke. Recently, increase in sPECAM-1 levels in serum and cerebrospinal fluid (CSF) has been shown within 24 h of the onset of stroke, having indirectly suggested involvement of the molecule in the inflammatory events during the early phase of stroke.
The question as to the role of immunological mechanisms in neuronal death of extrapyramidal cell systems in Parkinson`s disease is till now not fully resolved. One of the approaches includes an examination of circulating blood cells. In our studies consisting of 24 patients the peripheral blood was studied before and after medication with L-DOPA compounds. Patients with Parkinson`s disease demonstrated an increase of lymphocyte Cd95/CD3 as well as a considerable number of cells dead by apoptotic processes. After treatment with L-DOPA both the percentage of CD95/CD3, acknowledged as an antigen marker characteristic for apoptotic cells as well as the number of cells dead by apoptotic processes were decreased. These findings thus indicate that levodopa treatment in Parkinson`s disease has an impact on apoptotic processes in this instance, and this should be taken into consideration as a positive event in the pathomechanism effected by this treatment.
Gastric microcirculation plays an important role in the maintenance of the gastric mucosal barrier and mucosal integrity. Sensory nerves are involved in the regulation of mucosal blood circulation and mucosal defense. Therefore, the ablation of these nerves by neurotoxic doses of capsaicin provides the possibility of determination of their role in gastric mucosal integrity. Stress ulceration represents a serious gastric lesions. Results of our previous experiments have indicated that water immersion and restraint stress (WRS) led to increased oxidative metabolism. Ablation of sensory nerves by high doses of capsaicin retards healing of gastric ulcers, but the role of reactive oxygen species (ROS) in the healing process has been little studied. Therefore, the aim of our present investigations was to determine the participation of ROS in sensory nerve activity during WRS. Experiments were caried out on 90 male Wistar rats and the area of gastric lesions was measured by planimetry.Colorimetric assays were used to determine gastric mucosal levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), as well as superoxide dismutase (SOD) activity. We demonstrated that inactivation of sensory nerves resulted in magnification of gastric mucosal damage induced by the WRS. In this process, oxidative stress, as reflected by an increase of MDA and 4-HNE tissue concentrations (an index of lipid peroxidation), as well as decrease of SOD activity, could play an important role. Aspirin, applied in a low dose, exerts a protective activity, possibly due to its metabolites, which possess the anti-oxidant and ROS scavanging properties. Pentoxyfilline-induced gastroprotection and hyperemia depends upon attenuation of the oxidative stress. This protection and hyperemia were, at least in part, attenuated by ASA.
Experimental autoimmune encephalomyelitis (EAE) is an animal model that mimics many aspects of multiple sclerosis (MS). Chronic or relapsing inflammation of the central nervous system results in the destruction of myelin sheath and cytokines play an important role in the pathogenesis of both MS and EAE. Myelin, oligodendrocytes and neurons are lost due to an inflammatory attack by leukocytes infiltrating the central nervous system (CNS) and releasing cytotoxic cytokines, anti CNS antibodies and large amounts of the excitatory neurotransmitter glutamate. Pharmacological studies have suggested that glutamate receptors mediate white matter injury in a variety of CNS diseases, including multiple sclerosis (MS). Memantine and amantadine are ionotropic glutamate receptors (iGluRs) antagonists. Memantine, a clinically applied drug with N-methyl-D-aspartate (NMDA) receptor antagonistic effects, dose-dependently ameliorates neurological deficits in Lewis rats subjected to experimental autoimmune encephalomyelitis (EAE). The aim of the present study was to investigate the effects of memantine and amantadine on the expression of proinflammatory cytokines such interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and various chemokines in the brain of EAE rats. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Western Blot were used to analyze the cytokine profile. We noticed increased expression of array of cytokines in experimental group when compared to the control. Dramatic increase of IL-1β, IL-6, TNF-α, and chemokines concentration corresponding to the intensity of neurological symptoms and loss of weight was observed in EAE rats. Administration of iGluR antagonists at an advanced stage of unremitting EAE resulted in amelioration of the disease. Cytokine analysis revealed that memantine significantly decreased the expression of interleukins: IL-6 (65%), IL-1β (60%) and TNF-α (45%) whereas treatment with amantadine reduced only the expression of IL-6 (60%) and TNF-α (15%) when compared to EAE animals. These results show that antagonists of iGlu receptors modulate the course of the disease by reducing the expression of proinflammatory cytokines thereby confirming the involvement of glutamate receptors into pathological mechanisms operating during EAE. This study was supported by grant nr NN401620038 from Polish Ministry of Science and Higher Education
alpha-Synuclein (ASN) play important role in pathogenesis of Parkinson’s disease (PD) and other neurodegenerative disorders. Novel and most interesting data showed elevated tauopathy in PD and suggested relationship between ASN and Tau protein. However, the mechanism of ASN-evoked Tau protein modification is not fully elucidated. In this study, we investigated the role of glycogen synthase kinase-3β (Gsk-3β) and cyclin-dependent kinase 5 (Cdk5) in ASN-evoked Tau modification in dopaminergic PC12 cells. We used real-time quantitative PCR (qRT-PCR) analysis to assess Gsk3β gene expression and Western blot technique to analyse protein phosphorylation. The presence of apoptotic cells was assessed by Hoechst 33258 fluorescent staining, and cell viability was determined by the 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Our data showed that exogenously added ASN (10 μM) increases Tau phosphorylation on Ser396 and specific Gsk-3β inhibitor (SB-216763, 10 µM) opposite to Cdk5 inhibitor protects cells against Tau hyperphosphorylation. Western blot analysis showed that ASN affected Gsk-3β via increasing of protein level and activation of this enzyme. From immunochemical studies, was found that ASN treatment leads to significant increase in GSK-3β immunoreactivity by about 20%. GSK-3β activity evaluated by its phosphorylation status assay showed that ASN significantly increased the phosphorylation of this enzyme at Tyr216 with parallel decrease in phosphorylation at Ser9, indicative of stimulation of GSK-3β activity. ASN-induced apoptotic processes leads to decrease of PC12 cells viability, the apoptotic cells determined by phase contrast together with Hoechst 33258 fluorescent staining, indicated significantly increase of apoptosis in the presence of ASN. SB-216763 prevented ASN-induced cytotoxicity and enhanced PC12 cell viability. In conclusion, all these findings suggested that extracellular ASN is involved in Gsk-3β-dependent Tau modulation and its proapoptotic effect might be mediated at least in part by the Gsk-3β catalysed Tau hyperphosphorylation and impairment of cytoskeleton stability. GSK-3β inhibitors may offer promising tool against ASN-induced Tau modification and cytotoxicity in neurodegenerative disorders. Supported by statutory theme 9.
15
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Q fever - selected issues

59%
Q fever is an infectious disease of humans and animals caused by Gram-negative coccobacillus Coxiella burnetii, belonging to the Legionellales order, Coxiellaceae family. The presented study compares selected features of the bacteria genome, including chromosome and plasmids QpH1, QpRS, QpDG and QpDV. The pathomechanism of infection – starting from internalization of the bacteria to its release from infected cell are thoroughly described. The drugs of choice for the treatment of acute Q fever are tetracyclines, macrolides and quinolones. Some other antimicrobials are also active against C. burnetii, namely, telitromycines and tigecyclines (glicylcycline). Q-VAX vaccine induces strong and long-term immunity in humans. Coxevac vaccine for goat and sheep can reduce the number of infections and abortions, as well as decrease the environmental transmission of the pathogen. Using the microarrays technique, about 50 proteins has been identified which could be used in the future for the production of vaccine against Q fever. The routine method of C. burnetii culture is proliferation within cell lines; however, an artificial culture medium has recently been developed. The growth of bacteria in a reduced oxygen (2.5%) atmosphere was obtained after just 6 days. In serology, using the IF method as positive titers, the IgM antibody level >1:64 and IgG antibody level >1:256 (against II phase antigens) has been considered. In molecular diagnostics of C. burnetii infection, the most frequently used method is PCR and its modifications; namely, nested PCR and real time PCR which detect target sequences, such as htpAB and IS1111, chromosome genes (com1), genes specific for different types of plasmids and transposase genes. Although Q fever was diagnosed in Poland in 1956, the data about the occurrence of the disease are incomplete. Comprehensive studies on the current status of Q fever in Poland, with special focus on pathogen reservoirs and vectors, the sources of infection and molecular characteristics of bacteria should be conducted.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.