Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pancreatic stellate cell
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Polish experience in molecular pancreatology mostly involves experimental work on intracellular signal transduction mechanisms in pancreatic acinar cells. It was found that stimulation with cholecystokinin (CCK) or exposure of pancreatic acini to reactive oxygen species induces three separate signaling cascades leading to activation of ERKs, JNK/SAPKs and p38 MAPK. In pancreatic acini, ERK cascade is also activated by epidermal growth factor (EGF). However, CCK and EGF activate this cascade by different mechanisms. EGF activates the cascade in a classical Ras-dependent manner, while CCK-induced activation of the ERK cascade is Ras-independent. Furthermore, stimulation with CCK leads to a rapid activation of PKC, which in turn may directly activate Raf family of kinases. Freshly isolated pancreatic acini contain pancreatic stellate cells which respond to EGF by activation of ERK cascade. It is possible that stimulation with CCK and EGF induces a cross-talk between acinar and stellate cells. Isolated pancreatic acinar cells irradiated with UV-B die predominantly by apoptosis while necrosis predominates among the cells subjected to supraphysiological concentrations of CCK. In pancreatic acini subjected to stressful stimuli the regulation of apoptosis may involve interaction between ERK and p38 MAPK signaling pathways. Acute pancreatitis in rats and in humans is associated with a marked increase in the plasma level of leptin which is caused by increased production of this peptide in the inflamed pancreas. It is possible that exogenous leptin protects the pancreas against development of acute pancreatitis by the activation of nitric oxide pathway.
Chronic pancreatitis (CP) is a progressive disease, in which the exocrine function of the gland is gradually lost and fibrosis develops due to repeated episodes of acute pancreatitis. The aim of the study was to investigate the effects of RAS inhibitors on the apoptosis of acinar cells and pancreatic stellate cells (PSCs) elimination in experimental CP induced by dibutyltin dichloride (DBTC). CP was induced by administration of DBTC to the femoral vein. Simultaneously captopril, losartan, enalapril and lisinopril were administered intraperitoneally. The rats were decapitated after 60 days and tissue of pancreas was collected. In rats treated by DBTC the features of inflammatory infiltration, ductal lumen dilatation, fibrosis were found. Strong reactivity with capsase2L and clusterin-ß antibodies was observed in areas of fibrosis. In animals treated with RAS inhibitors inflammatory changes and fibrosis were less severe. In groups of rats treated with DBTC and RAS inhibitors immunoreactivity of capsase2L and clusterin-ß was weak. Positive immunostaining against smooth muscle actine and desmin was observed in the elongated cells (PSC-s). This reaction was weak in groups of rat treated with DBTC and RAS inhibitors. Treatment of CP rats with RAS inhibitors alleviate apoptosis of pancreatic acinar cells and induces PSCs elimination.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.