Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  nanobiotechnology
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Nanodiagonastic methods in plant pathology are used for enhancing detection and identification of different plant pathogens and toxigenic fungi. Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by using some nanoparticles is emerging as a new area of research. In the current research, silver, zinc, and gold nanoparticles were used to increase the yield of DNA for two plant pathogenic fungi including soil-borne fungus Rhizoctonia solani and toxigenic fungus Alternaria alternata. Gold nanoparticles combined with zinc and silver nanoparticles enhanced both DNA yield and PCR products compared to DNA extraction methods with ALB buffer, sodium dodecyl sulfate, ALBfree from protinase K, ZnNPs and AgNPs. Also, by using ZnNPs and AgNPs the DNA yield was enhanced and the sensitivity of random amplified polymorphic DNA (RAPD) PCR products was increased. Application of nanomaterials in the PCR reaction could increase or decrease the PCR product according to the type of applied nanometal and the type of DNA template. Additions of AuNPs to PCR mix increased both sensitivity and specificity for PCR products of the tested fungi. Thus, the use of these highly stable, commercially available and inexpensive inorganic nano reagents open new opportunities for improving the specificity and sensitivity of PCR amplicon, which is the most important standard method in molecular plant pathology and mycotoxicology.
Nanotechnology is engineering and manufacturing at the molecular or nanometer length scale, The арplication of nanotechnology to biotechnology is called nanobiotechnology, which may be realize in many ways and it is going to have broad, sweeping applications that have the potential to significantly improve the quality and safety of food. It. will be the first step and will play a prominent role. The mote exciting applications of nanobiotechnology in the development of nanobiosensors (with nanofluidic chips) that, can be placed in beer production and beer distribution facilities - and, longer term, in the packing itself - to detect rapid and sensitive the presence of everything from biological cells, GMO and foreign protein, microorganisms. The speed and simplicity of nanotechnology methods gives researchers the flexibility to experiment with the conception and construction of nаnо-chips, i.e. DNA-chips, protein- chips or lab-on-a-chip, nanobiobots that can test any number of ideas. All developed nanomachines and nanobiobots can be used to brewery yeasts in their genome, proteome and metabolome analysis for industrial characteristic These practical aspects of nanobiotechnology have a big application in all food processing and food safety in near future.
3
100%
Aktualny postęp w zakresie nanobiotechnologii doprowadził do rozwoju nowego obszaru nanomedycyny, związanego z aplikacją nano(bio)materiałów zarówno w celach diagnostycznych jak i terapeutycznych (teranostyki). Główne oczekiwania i wyzwania w powyższym zakresie dotyczą nanoproduktów magnetycznych, otrzymywanych metodami bioinżynierii, o potencjalnym zastosowaniu w transporcie leków, przede wszystkim leków przeciwnowotworowych, stosowanych w terapiach wykorzystujących określone molekularne punkty uchwytu. Wyjątkowe właściwości fizykochemiczne nanocząstek magnetycznych rokują nadzieję na rozwój współczesnej nanomedycyny nowotworów, stanowiąc między innymi technologiczny przełom w zakresie celowanego transportu leków i genów, terapii nowotworów z wykorzystaniem magnetycznej hipertermii, inżynierii tkankowej, znakowania komórek nowotworowych czy molekularnego obrazowania rezonansem magnetycznym. Wraz z szerokim zainteresowaniem magnetycznymi nanoproduktami bioinżynierii, w sferze szczególnej uwagi pozostaje ich potencjał toksyczny. Pokaźna ilość dotychczasowych dowodów naukowych sugeruje, że pewne właściwości nanocząstek magnetycznych (np. podwyższona aktywność powierzchniowa, zdolność do penetracji przez błony komórkowe, oporność na procesy biodegradacji) może zwiększać ich potencjał cytotoksyczny w porównaniu z odpowiadającymi im materiałami nieposiadającymi rozmiarów w nanoskali. Innymi słowy, ocena bezpieczeństwa przeprowadzona w odniesieniu do standardowych materiałów magnetycznych, może mieć ograniczone zastosowanie w ocenie ryzyka narażenia zdrowotnego i środowiskowego w przypadku nowych nanoproduktów magnetycznych otrzymanych metodami bioinżynierii. W niniejszym artykule dyskutujemy główne kierunki badawcze prowadzone w doświadczalnych modelach in vitro oraz in vivo w celu oceny toksyczności magnetycznych nanozwiązków, zwracając szczególną uwagę na problematykę analizy toksykologicznej nanomagnetyków. W pracy zaprezentowano ponadto nowe kierunki badawcze prowadzone na polu nanotoksykologii, podkreślając znaczenie rozwoju alternatywnych metod testowania magnetycznych nano(bio)produktów.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.