Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  maturity index
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Agricultural practices in organic farming theoretically are supposed to lead to higher diversity and activity of soil organisms, which correlates with the stability or resilience of the soil system. In a 3-year study, we tested that hypothesis by comparing the nematode abundance, genera composition and community structure in the soil of winter wheat crop under organic and conventional management. We found the soil type to be a stronger predictor for the total nematodes abundance than the farming system itself. In both systems nematode densities were higher in the sandy than in the clayey soil. Total abundance of nematodes was significantly higher in the organic than conventional farm only in sandy soil and only in the autumn. Significantly more plant feeders was observed in organic than in the conventional crops regardless the soil type. In the clayey soil more bacterial feeders were found in the conventional farm, while in the sandy soil — in the organic one. Nematode generic richness was higher in the organic (a range of 15–35 genera) than in the conventional crops (a range of 15–29) on most sampling dates. Higher generic diversity (H') in the organic crop than in conventional was found for total nematodes in the clayey soil, and for hyphal feeders in sandy soil. H' for plant feeders were higher under organic than conventional system in both types of soil. In both farming systems bacterial feeding genera (Rhabditis, Panagrolaimus, Cephalobus and Acrobeloides) dominated in the communities. Plant feeders and omnivores were found among dominant genera only in the clayey soil, first under both systems, the latter only in the organic crops. The evaluation based on the ecological indices such as Maturity Index, Plant Parasite Index, Enrichment and Structure Index, and ratios between nematode trophic groups, showed that nematode communities under both farming systems most of the time were low matured and the soil food webs strongly disturbed.
Trophic structure, number and density of taxa, generic diversity, and maturity indices were compared for soil nematode communities inhabiting a 170-year-old shelterbelt, 6-year-old shelterbelt, and a maize field adjacent to the younger shelterbelt. The study was conducted in an area of long-term research near Turew (Wielkopolska Region, West Poland). Sampling sites in the crop field were located at distances of 0.5 m, 10 m and 50 m from the younger shelterbelt. In the soil of shelterbelts more taxa occurred in comparison with the cropland, the index of generic diversity was higher, the dominance of nematodes of the class Secernentea (r-strategists s.l.) over Adenophorea (K-strategists s.l.) was lower, community maturity indices and bacterivore maturity index were higher, and the ratio of plant parasite index to maturity index was lower, providing evidence for a more advanced stage of succession in the shelterbelts. In the maize field, fungivorous and plant feeding nematodes predominated, with a strong dominance of one of the taxa pathogenic to plants (Pratylenchus). The effect of 6-year old shelterbelt on nematode community in maize crop field was observed in the field part closest to the shelterbelt.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.