Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  industrial effluent
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Textile industries consume substantial volumes of water and chemicals for wet processing of textiles. Effluent discharge from textile industries to neighbouring water bodies and wastewater treatment systems is currently causing significant health concerns. Chemically enhanced primary treatment (CEPT) involves the use of chemical coagulants to enhance the coagulation or flocculation of wastewater particles. The chemicals of aluminum sulphate (alum), ferric chloride (FeCl₃) and cationic polymer were studied by jar test to select the most suitable coagulant for effective treatment of textile industrial effluents. The results showed that the optimum dosage for the removal of 75% of colour, 64% turbidity and 69% of chemical oxygen demand (COD) was 300 ppm of alum after pH adjustment at pH = 7.2. An experiment further revealed that the addition of 300 mg l⁻¹ of alum and 1 mg l⁻¹ of polymer could provide a reduction of colour, turbidity, COD and phosphorous higher than 95%, 75%, 76% and 90%, respectively. The experimental results confirmed that CEPT can be adopted as a decolorization of textile industrial effluents. Moreover, it can improve sludge setting and dehydration properties, and decrease the treatment cost.
The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the physico-chemical properties of Mahul Creek water. From the results of our study it was observed that the annual average COD level was 362.09 ppm which was far higher than the maximum tolerable level of 250 ppm set for inland surface water as well as for marine coastal water. The annual average conductivity was found to be 6122.81 μS cm-1 which was very much above the conductivity limit for inland surface water of 1000 μS cm-1 set by Central Pollution Control Board (CPCB) for propagation of fisheries. The annual average total alkalinity level was recorded as 166.25 ppm, which according to the UN Department of Technical Cooperation for Development (1985) was found to be strongly alkaline. The annual average hardness level of the creek water was found to be 2488.65 ppm which was above the limit of 300 ppm set by ISI. From the results of the present investigation it seems that the time has come to implement proper effluent water treatment techniques and enforcement of pollution control by the regulatory authority on the indiscriminate discharge of industrial wastewater into water bodies.
3
100%
The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the level of toxic heavy metals in the water of Mahul Creek near Mumbai. It was observed that the annual average concentration of heavy metals like Cd, As, Hg, Cr, Pb, Cu, Ni and Zn, was found to be 0.003, 0.004, 0.0009, 0.012, 0.015, 0.019, 0.04 and 0.23 ppm respectively. The results suggest that there is a need to have such scientific monitoring for longer time period in order to understand the trend in level of these toxic heavy metals discharged in to the creek water. It is feared that the existing problem if ignored may increase the level of this heavy metals in creek water thereby creating threat to the biological life of an aquatic ecosystem. From the results of the present investigation it seems that the time has come to move towards ecosystem specific discharge standards to maintain the health and productivity of natural resources on which the majority of Indians are dependent.
The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the level of toxic heavy metals in the sediments of Mahul Creek near Mumbai. The annual average concentration of heavy metals like Cr, Zn, Cu, Ni, Pb, Cd, As and Hg was found to be 277.5, 121.7, 100.3, 63.8, 21.5, 14.6, 10.4 and 4.9 ppm respectively. It is feared that this heavy metals accumulated in the creek sediments may enter the water thereby creating threat to the biological life of an aquatic ecosystem. The results of present study indicates that the existing situation if mishandled can cause irreparable ecological harm in the long term well masked by short term economic prosperity due to extensive industrial growth.
A chromium resistant bacterial strain KUCr1 exhibiting potential Cr(VI) reducing ability under in vitro aerobic condition is reported. The bacterial strain showed varied degree of resistance to different heavy metals. The MIC of chromium to this strain was found to be 950 mM under aerobic culture condition in complex medium. The factors affecting Cr(VI) reduction by this strain under culture condition were evaluated. Maximal Cr(VI) reduction was observed at the pH 8 to 10 and at a temperature of 35°C. Higher concentration of Cr(VI) slowed down the reduction, eventually all the metal could be reduced with longer incubation time. Different toxic metals showed differential effect on reduction. Cadmium and zinc were found to inhibit reduction. Cr(VI) reduction and bioremediation were found to be related to the growth supportive condition in terms of carbon, phosphorous and nitrogen supply in wastewater fed with tannery effluent indicating cell mass dependency of Cr(VI) reduction. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCr1, as the name given to it, was identified as a strain of Bacillus firmus.
Behavioural activities in relation to toxicological aspects involve behavioural changes of aquatic organisms under the exposure of a contaminant. The present study aims to know behavioural activities of midge larvae Chironomus sp. at the in-situ acute exposure of different chemicals containing wastewater viz. lead-acid battery industrial effluent, mixed industrial effluent and fresh tap water (chlorinated) as drinking water in comparison to control (dechlorinated) water sample (aged tap water). The Chironomus larvae were kept in three different experimental chambers (perforated wall test vessels) with the exposure of different water samples. These samples were made with no dilution, 50 % dilution, 2.5 % dilution and control water sample. The behavioral activities for larvae of Chironomus sp. were measured at 0h, 2h, 24h and 48 h in in-situ condition. The behavioral activities viz. crawling, looping, ventilation, paralyses and subsequently death of the larvae were recorded in the field condition. A significant differences (P < 0.05, P < 0.01 and P< 0.001) were observed with increasing time of exposure while in few cases the data were increased without significance level. It was recorded that after exhibiting behavioural activities viz. crawling, looping, ventilation and paralyses finally all species were died 100 % of the population in lead acid battery effluent following both 24h and 48hr exposure. In addition, death of larvae were 70 % in mixed industrial effluent and 50 % in fresh tap water (chlorinated) after 48h exposure as compared to control sample water. In conclusion, the present results indicate that the larvae of Chironomous sp. are suitable indicators in the evaluation of the effluent quality in the studied stream, potential to know by behavioural toxicological study for heavy metals and organic pollution. Although it is a preliminary observation by assessing behavioural toxicology but future study in relation to biochemical and genetic damage of Chironomous larvae with the exposure of toxic water samples will provide bigger view.
The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the physico-chemical properties of sediments samples collected along the Mahul Creek of Mumbai. The annual average pH value of the creek sediments was recorded as 5.38. It is feared that such low pH value of sediment might increase the acidity of creek water thereby triggering the heavy metal toxicity which will further reduced survivorship in fish through chronic stress and affect the reproductive partner. The annual average salinity content of the sediment was recorded as 4601.17 ppm. It is important here to note that the high salinity of the sediment may increase the salinity level of creek water which is considered as a major stress factor for most freshwater organisms including crustaceans. The average annual concentration of phosphate in the creek sediment was found to 480.39 ppm. Such high concentration of phosphate in the creek sediments might accelerate the process of eutrophication. From the results it appears that as India moves towards stricter regulation of industrial effluents to control water pollution, greater efforts are required to reduce the risk due to the toxic pollutants which are released into the ecosystems.
Sugar mill is one of the agro based industry and great significant in rural economy of developing countries. It creates environmental pollution by produced waste during sugar production. In the present work deals with the analysis of various change of biochemical in African marigold (Tagetes erecta L.) at 15 DAS under the different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent. Results of this study determined that the lower concentration (10%) of sugar mill effluent increased photosynthetic pigment and biochemical contents of African marigold and it decreased at higher concentrations of the sugar mill effluent. The lower concentrations of sugar mill effluent used for irrigation.
Decreasing water level and shortage of water is being a major problem worldwide. For agriculture purpose this problem gives rise to the use of alternative sources of water. Most of these water sources are affected by the discharge waste of effluent from various types of industries like mining, textiles, chemical etc. Due to reason this effluent may contains many organic toxic substances that could have hazardous impact on human health. In addition, technological development has contributed to increase other industrial dumping that contaminates surface waters. The irregular disposal of industrial effluent has created pollution problems since this effluent is disseminated in the environment or is accumulated in sediments, aquatic organisms, and water. In this paper a solution for this global issue has been addressed and strategies have been suggested for this problem.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.