Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  hypothyreosis
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The anthracycline anticancer agent doxorubicin has been recognised to induce a dose-dependent cardiotoxicity. The chronic form of such complication is characterised by an irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be multifactorial, the pivotal role has been attributed to reactive oxygen species formation. Because redox equilibrium in cardiomyocytes may be regulated via iodothyronine hormones, the aim of the study was to appraise the effect of hypothyroidism on heart damages induced by doxorubicin. The rats received methimazole in drinking water (0.001 and 0.025%) after doxorubicin administration (2.0, 5.0 and 15 mg/kg). The cardiac morphology and blood biochemical markers of heart damage were assessed. Decreased levels of iodothyronine hormones had not significant impact on cardiac morphological changes and no effect on the level of B-type natriuretic peptide in rats receiving doxorubicin. Lower hormonal levels had sporadic, diverse effect on blood transaminases, lactate dehydrogenase and creatine kinase levels, but any relation to time, doxorubicin doses and hypothyroid status was found. Hypothyreosis leads to increase in fatty acid binding protein in rats receiving higher dose of doxorubicin. Hypothyreosis had no effect on heart stretching and on necrosis at morphological level, but caused biochemical symptoms of cardiomyocyte necrosis in rats receiving doxorubicin. (Folia Morphol 2013; 72, 4: 340–348)
The myosin heavy chain (MHC) was studied by biochemical methods in the slow-twitch (soleus) and two fast-twitch leg muscles of the triiodothyronine treated (hyperthyroid), thyreoidectomized (hypothyroid) and euthyroid (control) rats. The changes in the contents of individual MHC isoforms (MHC-1, MHC-2A, MHC-2B and MHC-2X) were evaluated in relation to the muscle mass and the total MHC content. The MHC-1 content decreased in hyperthyreosis, while it increased in hypothyreosis in the soleus and in the fast muscles. The MHC-2A content increased in hyperthyreosis and it decreased in hypothyreosis in the soleus muscle. In the fast muscles hyperthyreosis did not affect the MHC-2A content, whereas hypothyreosis caused an increase in this MHC isoform content. The MHC-2X, present only in traces or undetected in the control soleus muscle, was synthesised in considerable amount in hyperthyreosis; in hypothyreosis the MHC-2X was not detected in the soleus. In the fast muscles the content of MHC-2X was not affected by any changes in the thyroid hormone level. The MHC-2B seemed to be not influenced by hyperthyreosis in the fast muscles, whereas the hypothyreosis caused a decrease of its content. In the soleus muscle the MHC-2B was not detected in any groups of rats. The results suggest that the amount of each of the four MHC isoforms expressed in the mature rat leg muscles is influenced by the thyroid hormone in a different way. The MHC-2A and the MHC-2X are differently regulated in the soleus and in the fast muscles; thyroid hormone seems to be necessary for expression of those isoforms in the soleus muscle.
4
Content available remote

Effect of hypothyreosis on the content of ceramides in rat tissues

72%
Ceramide is the second messenger in the sphingomyelin signalling pathway. A number of extracellular stimuli increase the content of ceramide in the cell. There are some data indicating that the content of ceramide may also be regulated by hormones. The aim of the present study was to examine the effect of hypothyreosis on the content and composition of ceramide in rat tissues. The rats were thyroidectomized and thereafter they received propylthiouracyl in drinking water. The control rats were sham operated. 30 days after thyroidectomy or sham operation the rats were anaesthetized and samples of the liver, white and red vastus lateralis and left ventricle were taken. One set of samples was frozen in liquid nitrogen for analysis of ceramide. Another set of samples was freshly homogenized in chloroform/methanol for further determination of the content of sphingomyelin phosphorous. The content and composition of ceramide-fatty acids was determined by means of gas-liquid chromatography. Twelve ceramides containing different fatty acid residues were identified in both groups. Hypothyreosis reduced the total content of ceramide in each tissue studied: in the heart by 50.9%, in the red vastus by 28.6%, in the white vastus by 29.4% and in the liver by 22%. Concomitantly, the content of individual ceramides was either reduced, stable or even elevated, depending on the tissue. The content of sphingomyelin was elevated in both sections of the vastus lateralis and remained stable in the heart and the liver. The ratio: total content of sphingomyelin to total content of ceramide was elevated in the muscles and remained stable in the liver. This indicates that the reduction in the content of ceramide in the tissues of hypothyroid rats may be a consequence either of a reduction in the formation of ceramide from sphingomyelin, its increased hydrolysis or both. It is concluded that normal thyroid function is needed to maintain the content and composition of ceramide in the tissues.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.