Adenosine 5'-phosphoramidate (NH2-pA) is an uncommon natural nucleotide of poorly understood biochemistry and function. We studied a plant enzyme potentially involved in the catabolism of NH2-pA. A fast and simple method comprising extraction of yellow lupin (Lupinus luteus) seed-meal with a low ionic strength buffer, ammonium sulfate and acetone fractionations, removal of contaminating proteins by heat denaturation, and affinity chromatography on AMP-agarose, yielded homogenous nucleoside 5'-phosphoramidase. Mass spectrometric analysis showed that the lupin hydrolase exhibits closest similarity to Arabidopsis thaliana Hint1 protein. The substrate specificity of the lupin enzyme, in particular its ability to split the P-S bond in adenosine 5'-phosphorothioate, is typical of known Hint1 proteins. Adenosine 5'-phosphofluoride and various derivatives of guanosine 5'-phosphoramidate were also substrates. Neither common divalent metal cations nor 10 mM EDTA or EGTA affected the hydrolysis of NH2-pA. The enzyme functions as a homodimer (2 × 15 800 Da). At the optimum pH of 7.0, the Km for NH2-pA was 0.5 µM and kcat 0.8 s-1 (per monomer active site). The properties of the lupin nucleoside 5'-phosphoramidase are compared with those of its counterparts from other organisms.