Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  genetic mapping
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This paper reports the construction a map based on Amplified Fragment Length Polymorphic DNA (AFLP) in Scots pine (Pinus sylvestris L.). The main purpose of map construction was its application to quantitative traits loci (QTL) mapping for breeding traits economically important in Scots pine breeding program such as tree height and diameter at breast height, number of needles and their length, width, and area. Genomic DNA of needles and haploid megagamethophytes from seeds originating from a single tree were amplified with 25 AFLP primer-enzyme combinations with three or four selective nucleotides. Sixteen of them generated easily readable patterns and revealed a polymorphism. Each analyzed marker was tested for the expected 1 : 1 segregation ratio using χ2 – test and only 6 were significant with (α ≤ 0.05). The total map size equaled 291,7 cM and all markers were distributed within one linkage group. For all traits only one QTL associated with tree height (H) was detected.
A common wheat (Triticum aestivum L.) mutation that produces 3 pistils (TP) per floret may result in formation of up to 3 kernels per floret. The TP trait may be important for increasing the number of grains per spike and for improving the yield potential through breeding. This trait is determined by the dominant Pis1 gene. Genetic mapping of Pisl involved 234 microsatellite markers and bulk segregant analysis of a cross of the TP line with Novosibirskaya 67. The Pis1 gene is located on chromosome 2DL, between markers Xgwm539 and Xgwm349. This result does not agree with a previously published localization of the Pis1 gene on chromosome 5B. The possible importance of TP wheat as an alternative genetic resource is discussed.
W describe an effective systematic approach to genetic mapping of cDNA clones, including those obtained from EST sequencing. The EST of interest is first partially sequenced from the 3'-end. PCR primers which bracket the 3'-UTR segment of the cDNA are designed. The corresponding gene segment is amplified from the parents of the mapping population, using primers equipped with 3'- and 5'-extensions to facilitate direct sequencing of PCR products. Comparison of the sequences obtained from the mapping parents frequently reveals single nucleotide polymorphisms or insertion / deletion polymorphisms, which can then be genotyped in a mapping population. The genotyping of SNPs is performed by pyrosequencing, a sequencing-by-synthesis method that has been used successfully in SNP diagnostics. SNP analysis of up to 96 samples, a number required to produce meaningful genetic segregation data, can be rapidly accomplished in parallel. The parental genotype of three loci, stearoyl-ACP desaturase, nucleoside-diphosphate kinase and sucrose synthetase-1 were determined by conventional sequencing, and the polymorphism so identified were scored by the pyrosequencing of 94 individuals of a maize recombinant-inbred population. These loci were successfully placed onto chromosomes 3, 7 and 9 respectively. This method is generally applicable to most plant species, which show sufficient sequence diversity in the 3'-UTR region of genes.
The RAPD method (Random Amplified Polymorphic DNA) was used for identifying and mapping new molecular markers in pea. RAPD analysis of various cultivars and lines of pea was carried out using 10-mer random primers. The presence of multiple polymorphism between cultivars and lines was revealed; at least one fragment for any given primer was present in the DNA of one form of pea and absent in the DNA of another line or cultivar. To detect molecular markers linked to the genes of chi-15, xa-18 and also to the 12 morphological markers of the L-1238 line, the F2 populations (Chi-15 x L-1238), (Vio x L-1238), (Xa-18 x L-1238), (L-111 x Chi-15) and (L-84 x Xa-18) were studied via bulked segregant analysis. DNA molecular analysis of F1 hybrids revealed the presence of parental polymorphic fragments in all of the populations. The study of the F2 plants showed that the obtained fragments are inherited as Mendelian factors. 13 RAPD-markers linked to genes of A/a (flower color), I/i (seed color), Gp/gp (pod color), R/r (seed form), S/s (seeds linkage), and also to genes of Chi-15/chi-15 (leaf color) and Xa-18/xa-18 (leaf color) were discovered. The study of individual plant DNA from the F2 populations allowed us to determine the genetic distances between genes and the RAPD markers linked to them.
Citrus gummosis, caused by Phytophthora spp., is an important citrus disease in Brazil. Almost all citrus rootstock varieties are susceptible to it to some degree, whereas resistance is present in Poncirus trifoliata, a closely related species. The objective of this study was to detect QTLs linked to citrus Phytophthora gummosis resistance. Eighty individuals of the F₁ progeny, obtained by controlled crosses between Sunki mandarin Citrus sunki (susceptible) and Poncirus trifoliata cv. Rubidoux (resistant), were evaluated. Resistance to Phytophthora parasitica was evaluated by inoculating stems of young plants with a disc of fungal mycelia and measuring lesion lengths a month later. Two QTLs linked to gummosis resistance were detected in linkage groups 1 and 5 of the P. trifoliata map, and one QTL in linkage group 2 of the C. sunki map. The phenotypic variation explained by individual QTLs was 14% for C. sunki and ranged from 16 to 24% for P. trifoliata. The low character heritability (h² = 18.7%) and the detection of more than one QTL associated with citrus Phytophthora gummosis resistance showed that inheritance of the resistance is quantitative.
Analizami objęto dwie populacje F2 mieszańców międzyliniowych żyta oraz zestaw 62 rekombinacyjnych linii wsobnych (RIL-F7) żyta wyprowadzonych z mieszańca 541 × Ot1-3. Potwierdzono istnienie sprzężenia między uprzednio wytypowanymi trzema markerami RAPD, a genem kontrolującym męską sterylność w cytoplazmie C. Dodatkowo zidentyfikowano zestaw pięciu nowych markerów RAPD sprzężonych z genem Rfc1, ale wśród nich tylko jeden wykazywał sprzężenie z genem męskiej sterylności wystarczająco silne dla podjęcia prób wykorzystania go przy selekcjonowaniu materiałów hodowlanych.
Pasta colour is one of the main factors influencing pasta quality. It is the product of a desirable yellow component, an undesirable brown component and, under some drying conditions, a red component. The brown colour depends on enzymatic and chemical factors. Polyphenol oxidase (PPO; E.C. 1.14.18.1) is one of the enzymatic factors. It is mainly localised in the peripheral part of the wheat kernel, and is involved in the oxidation of endogenous wheat phenolic compounds resulting in the production of highly coloured products. Therefore, a knowledge of the genetic control of PPO activity could enable the developing of better strategies in breeding programs to reduce pasta darkening. The aim of this study was to map the gene(s) affecting PPO activity using a set of recombinant inbred (RI) lines, derived from a cross between Triticum turgidum L. var. durum cultivar Messapia and the accession MG4343 of Triticum turgidum L. var. dicoccoides. After performing linkage analysis, the gene for high PPO activity was mapped on the long arm of the chromosome 2A and its characteristic was found highly associated to the RFLP marker Xutv1427-2A, with a value of LOD equal to 29.84. The identification of molecular markers linked to loci controlling the PPO activity may potentially accelerate wheat breeding since the selection of plants can be carried out by genotype rather than phenotype.
The quality of durum wheat (Triticum turgidum ssp. durum) is influenced by polyphenol oxidase (PPO) activity and its corresponding substrates. A saturated molecular-marker linkage map was constructed previously by using a set of recombinant inbred (RI) lines, derived from a cross between durum wheat cultivars Jennah Khetifa and Cham 1. Quantitative trait loci (QTL) for PPO activity in seeds were mapped in this population. PPO activity in seeds of the parents and 110 RI lines was measured spectrophotometrically. The PPO activity of Cham 1 was significantly lower than that of Jennah Khetifa. QTL analysis of these data indicated that most of PPO activity was associated with major loci on the long arm of chromosome 2A. The trait was found to be strongly associated with the SSR marker Xgwm312@2A. With this knowledge, marker-assisted selection can be used to select genotypes with lower PPO activity in durum wheat populations.
We applied SSR markers for mapping genes determining red coleoptile colour in wheat (Rc1, Rc2, Rc3) using F2 populations. All three genes map at about 15 to 20 cM distally from the centromere of chromosomes 7AS, 7BS and 7DS, respectively. The locations of the glume colour (Bg, Rg1) and glume hairiness (Hg) genes relative to the SSR markers of the homoeologous chromosomes group 1 were determined using molecular analysis of near-isogenic lines (NILs). One RAPD marker for the vernalisation response gene Vrn-A1 was identified by screening 95 random primers against two pairs of NILs. New PCR (STS) markers were developed based on RFLP-markers PSR426 (5A, 5B, 5D) and PSR1201 (1A, 5A, 5B). Analysis of nulli-tetrasomic and near-isogenic lines of wheat using the STS markers developed gave an indication that these new STS markers have the same chromosomal and intrachromosomal positions as the correspondent RFLP markers. Therefore, they could be used for mapping and/or tagging the vernalisation response (Vrn-A1, Vrn-B1, Vrn-D1) and homoeologous pairing (Ph1) genes.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.