Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  flowering biology
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Wild growing rose species are of great importance as a source of pollen for insects. Oil extracted from the petals of various Rosa species is used in perfumery, cosmetic industry, and therapeutics. In our study, we compared the flowering duration and flower lifespan, the number of stamens and pistils, the mass and size of pollen grains as well as the anatomical features of the petals of four Rosa species: R. canina, R. ×damascena, R. gallica, and R. rugosa. Moreover, we examined the pollen loads collected by bumblebees foraging on rose flowers in order to determine the attractiveness of pollen of this genus to insects. We showed the flower lifespan to vary (3.5–8 days) in the roses studied and revealed high variation in the number of stamens (82–260) and pistils (17–65) as well as in the mass of pollen produced. The flowers of R. rugosa produced the highest amount of pollen (26.7 mg per flower), while the flowers of R. canina the least (3.3 mg per flower), which is associated with differences in the number of stamens developed in the flowers between these species. The largest pollen grains were found in R. ×damascena and R. gallica. We demonstrated that R. ×damascena produces the thickest petals and that scent-emitting papillae found on the adaxial surface of the petals differ in size and shape in the rose species investigated.
The paper presents literature data on the flowering biology of eggplant and the influence of flower heterostyly on yielding. Flowers with long–styled pistol are the majority among all flowers on a plant (60%). Number of flowers with medium and short style is lower (10–15% and 22–30%, respectively). Eggplants set fruits from flowers with long style in 49–100% and with medium style in 46–85%. These flower’s stigmata have well – developed nodules and well – permissible tissues rich in polysaccharides, proteins styled flowers have small stigmata with underdeveloped nodules and, due to worse absorption, they are not pollinated and do not set fruits. Taking into account the complexity of many factors that make difficult or impossible to self-pollinate the eggplant’s flowers, the efficiency of three procedures intensifying the fruit budding has been presented: bunch vibrating, flower harmonization, and natural pollinating by bumblebees. Many authors’ studies confirm that flower bunch vibrating has not caused sufficient pollen setting on stomata and has not been sufficient for good eggplant flower pollination. Applying growth regulators appears to be more efficient and significantly affects the improvement of eggplant’s yielding. The highest efficiency has been achieved when applying insects as natural pollinators at cultivating the eggplant under covers.
Squill of the family Hyacinthaceae is a small bulb perennial. The present study on flowering and pollination of Scilla sibirica Andr., S. sibirica ‘Alba’, and S. bifolia L. was conducted in the years 1995, 1997, and 1999 in the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The plants flowered from the end of March until the middle of May. The duration of flowering of individual taxa was similar and it averaged 20 days (Scilla sibirica), 21 days (S. sibirica ‘Alba’), and 23 days (S. bifolia). The opening of flower buds always started around 9.00 am and lasted, depending on the taxon, until 3.00 pm (Scilla sibirica ‘Alba’), 4.00 pm (S. bifolia), and 5.00 pm (S. sibirica). The flowers were visited by bees (Apoidea), primarily the honey bee (Apis mellifera L.), bumblebee (Bombus L.), and solitary bees. Numerous honey bee foragers were observed; they bit through the anther walls and even attempted to open still closed flower buds in order to reach the pollen.
In Poland Galanthus nivalis L. is partially protected. The flowers of this species are one of the first sources of nectar and pollen for insects from February to April. The aim of this study was to present the flowering biology as well as the topography, anatomical, and ultrastructural features of the floral nectary. The flower lifespan, the breeding system, and the mass of pollen and nectar produced by the flowers were determined. Examination of the nectary structure was performed using light, fluorescence, scanning and transmission electron microscopy. The flower of G. nivalis lives for about 30 days. The stamens and pistils mature simultaneously and during this time nectar is secreted. The anthers of one flower produced the large amount of pollen (4 mg). The breeding system of G. nivalis was found to be characterized by partial self-compatibility, outcrossing, and xenogamy. The nectary is located at the top of the inferior ovary. The nectary epidermal cells are characterized by striated cuticular ornamentation. Initially, the secreted nectar formed vesicle-like protuberances under the cuticle. The epidermal and parenchymal cells contain numerous plastids, mitochondria, dictyosomes, ER cisterns, and vesicles fused with the plasmalemma, which indicates granulocrine nectar secretion.
The present study on lemon balm (Melissa officinalis L.) covered flowering biology, monitoring of pollinating insects and floral nectary structure. The micromorphology of epidermal cells of the nectary was investigated using scanning electron microscopy. The nectariferous tissues were observed using light microscopy based on semi-thin sections. Lemon balm flowered from the second decade of June until September. Buds opened from early morning hours until noon. Flowers lived for 24 hours, on the average. Their primary pollinator was the honey bee. The beginning of nectar secretion was found to be at the bud swell stage. The automorphic nectary forms a disc with four protrusions at the base of the nectary. Three smaller ones and one larger than the other ones were distinguished among them. No stomata were found on the lower protuberances, whereas on the highest part anomocytic stomata were present, the number of which was 15. The stomata exhibited different development stages and they were situated above other epidermal cells. In their outline, they were ellipsoidally shaped (18 x 23 μm) and they had average-sized cuticular ledges. They produced a smooth cuticle and wax granules. In cross section, the nectary tissues were composed of a singlelayered epidermis and 9 – 11 layers of the nectary parenchyma. Their thickness was 198 μm. In longitudinal section, the height of the nectary was within a range of 354 – 404 μm. The epidermal cells produced thin outer cell walls. Some of them were completely filled with strongly stained cytoplasm, whereas others showed a high degree of vacuolisation. But the nectary parenchyma cells were marked by poorly stained cytoplasm, a large nucleus and vacuolisation of varying degree.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.