Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  dihydrofolate reductase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Since yeast Saccharomyces cerevisiae mutants depleted of the voltage dependent anion selective channel (YVDAC1) are still able to grow on a non-fermentable carbon source, a functional transport system in the outer mitochondrial membrane must exist to support the access of metabolites into mitochondria. It was assumed that the properties of the system could be inferred from the differences in the results observed between wild type and mutant mitochondria since no crucial differences in this respect between the two types of mitoplasts were observed. YVDAC1-depleted mitochondria displayed a highly reduced permeability of the outer membrane, which was reflected in increased values of KNADH0.5 for respiration and KADP0.5 for triggering phosphorylating state as well as in delayed action of carboxyatractylate (CATR) in inhibition of phosphorylating state. The parameters were chosen to express the accessibility of the applied species to the intermembrane space. The passage of the molecules through the outer membrane depleted of YVDAC1 could be partially improved in the presence of bivalent cations (Mg2+, Ca2+), as in their presence lower values of the calculated parameters were obtained. The restrictions imposed on the transport of molecules through the YVDAC1-depleted outer membrane resulted in a competition between them for the access to the intermembrane space as measured by changes in parameters observed for a given species in the presence of another one. The competition was stronger in the absence of Mg2+ and depended on charge and size of transported molecules, as the strongest competitor was CATR and the weakest one - NADH. Thus, it can be concluded that the transport system functioning in the absence of YVDAC1 is modulated by bivalent cations and charge as well as size of transported molecules. Since an increased level of respiration due to the dissipation of Δψ causes an increase of KNADH0.5 in both wild type and YVDAC1-depleted mitochondria it is concluded that a common property of YVDAC1 and the system functioning in YVDAC1-depleted mitochondria seems to be the dependence of the capacity on the level of mitochondrial respiration.
Dihydrofolate reductase (DHFR, EC 1.5.1.3) is one of the enzymes active in the fo­late cycle which plays an important role in DNA synthesis. Inhibition of DHFR is a key element in the treatment of many diseases, including cancer and AIDS related infec­tions. A search for new selective inhibitors is motivated by the resistance to common drugs observed in the course of treatment. In this paper, results of a detailed com­puter analysis of human DHFR interactions with the lipophilic inhibitor piritrexim (PTX) are presented. It was found that the NADPH cofactor contributes 30% of the to­tal PTX-enzyme interaction energy. Substitution of the highly conserved Glu30 with alanine does not lead to the release of the inhibitor from the hDHFR pocket. The im­portant L22F point mutation does affect PTX orientation but does not change the binding energy. Simulations of the dynamics of binary hDHFR-PTX complexes were performed with the use of Extensible Systematic Force Field (ESFF) and the results in­dicate structural changes in the enzyme induced by NADPH binding.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.