Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  dendrimer
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Dendrimers are globular, hyperbranched polymers possessing a high concentration of surface functional groups and internal cavities. These unique features make them very useful in many biomedical applications, especially as carrier molecules. In this study, the interaction of tryptophan and 1-anilinonaphthalene-8-sulfonic acid with three types of polyamidoamine dendrimers was examined. It was observed that the type of dendrimer surface group has a strong impact on the interactions between the dendrimers and fluorescent molecules.
The BLM-system for studying the electrophysical properties of bilayer lipid membranes (BLM) was applied to investigate interactions between polyamidoamine (PAMAM) dendrimers and lipid bilayers. The cationic PAMAM G5 dendrimer effectively disrupted planar phosphatidylcholine membranes, while the hydroxyl PAMAM-OH G5 and carboxyl PAMAM G4.5 dendrimers had no significant effect on them.
Four low molecular mass lysine dendrimers were synthesized by Boc chemistry in solution (155 and 169) and Fmoc chemistry on solid support (P2 and P13). The structure and fragmentation mode of the above dendrimers was investigated in gas phase by the LSI-MS and ESI-MS techniques. 1H and 13C NMR analysis in solution (d6-DMSO) allowed to confirm the correct structure. Antimicrobial activities of the dendrimers against Staphylococcus aureus, Escherichia coli and Candida albicans confirmed our hypothesis that the dendrimer structure can be used for construction of molecules interacting with biological membranes.
Dendrimers are a new class of polymeric materials. They are highly branched, mono­disperse macromolecules. The structure of these materials has a great impact on their physical and chemical properties. As a result of their unique behaviour dendrimers are suitable for a wide range of biomedical and industrial applications. The paper gives a con­cise review of dendrimers' physico-chemical properties and their possible use in various areas of research, technology and treatment.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.