Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  coenzyme Q
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Ubiquinone, known as coenzyme Q, was shown to be the part of the metabolic pathways by Crane et al. in 1957. Its function as a component of the mitochondrial respiratory chain is well established. However, ubiquinone has recently attracted increasing attention with regard to its function, in the reduced form, as an antioxidant. In ubiquinone synthesis the para-hydroxybenzoate ring (which is the derivative of tyrosine or phenylalanine) is condensed with a hydrophobic polyisoprenoid side chain, whose length varies from 6 to 10 isoprene units depending on the organism. para-Hydroxybenzoate (PHB) polyprenyltransferase that catalyzes the condensation of PHB with polyprenyl diphosphate has a broad substrate specificity. Most of the genes encoding (all-E)-prenyltransferases which synthesize polyisoprenoid chains, have been cloned. Their structure is either homo- or heterodimeric. Genes that encode prenyltransferases catalysing the transfer of the isoprenoid chain to para-hydroxybenzoate were also cloned in bacteria and yeast. To form ubiquinone, prenylated PHB undergoes several modifications such as hydroxylations, O-methylations, methylations and decarboxylation. In eukaryotes ubiquinones were found in the inner mitochondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. Still, the subcellular site of their biosynthesis remains unclear. Considering the diversity of functions of ubiquinones, and their multistep biosynthesis, identification of factors regulating their cellular level remains an elusive task.
Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glyceropho- sphate-dependent respiration by exogenous CoQ3, since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ3, our data indicate that the activating effect of CoQ3 is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ3 could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differ­ences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.
Mitochondria are strongly involved in production of reactive oxygen species, considered today as the main pathogenic agent of many diseases. A vicious circle of oxidative stress and damage to cellular structures can lead to either cell death by apoptosis or to a cellular energetic decline and ageing. The early involvement of mitochondria in apoptosis includes expression of pro-apoptotic factors, release of cytochrome c from the inter-membrane space and opening of the permeability transition pore: cytochrome c release appears to precede pore opening. The mitochondrial theory of ageing considers somatic mutations (deletions) of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, Complex I appears to be mostly affected. We have developed the Pasteur effect (enhancement of lactate production by mitochondrial inhibition) as a bio-marker of mitochondrial bioenergetics in human platelets, and found it to be decreased in aged individuals. Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants coenzyme Q is the only one of endogenous biosynthesis; exogenous coenzyme Q, however, may protect cells from oxidative stress in vivo.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.