Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  biological clock
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The intergeniculate leaflet (IGL) of the thalamus constitutes a small but important part of the neural network controlling circadian activity in rodents. It appears that IGL integrates photic cues from retina with non-photic information originating from different nonspecific brain systems. Subsequently, this integrated signal is passed to the master biological clock - the suprachiasmatic nuclei (SCN). The common neurotransmitter of biological clock neural structures, the y-amino-butyric acid (GABA) is expressed in many, if not all, IGL and SCN neurons. Whole-cell patch clamp in vitro electrophysiological experiments were performed in order to evaluate GABA's influence on single IGL neurons in rat. Most neurons were hyperpolarized by GABA application and this effect was caused by activation of GABAa as well as GABAb receptors. The presence of GABAB receptors in rat's IGL has been suggested for the first time.
Cultures of Penicillium claviforme were grown in a magnetic field (60-70 mT) for 12 days under constant light or constant darkness. In light, the magnetic field affected the length of the rhythm period, which was at first somewhat shortened and later prolonged (24 h —> 24 h —> 36 h —> 36 h). In darkness, activation of the biological clock was manifested in the rhythm of the formation of coremia rings. The period of induced rhythm was different from that induced in light, representing a multiple of the 24 h period (96 h —> 96 h —> 96 h). The magnetic field distinctly affected the morphology of the newly formed coremia, which were identical in light and in darkness. In the applied conditions the magnetic field replaced the inductive effect of light, activating the expression of the biological clock in darkness. This is the first time that a magnetic field has been used to replace the inductive effect of light.
Since 1901, the Nobel Prize has been awarded to scientists who have made the most important discoveries for the benefit of humanity. The 2017 Nobel Prize in Physiology or Medicine was awarded jointly to Jeffrey C. Hall, Michael Rosbash and Michael W. Young “for their discoveries of molecular mechanisms controlling the circadian rhythm.” It may be surprising to learn that those three scientists dedicated their entire careers to research on the fruit fly, Drosophila melanogaster. However, as their studies progressed, it became increasingly clear that the mechanism of the biological clock that they discovered in Drosophila is very similar to a timekeeping mechanism present in mammals, including humans. Through interdisciplinary work between scientists performing basic research on model organisms and doctors working in medical schools, we have learned over time that daily rhythms support human health while disruption of these rhythms is associated with a range of pathological disorders such as cardiovascular problems, metabolic, neurological, and many other diseases. This short review will highlight critical milestones on the way to understanding biological clocks, focusing on the roles played by the three Nobel Prize winners.
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.
The male reproductive tract of Lepidoptera is an ideal model for the study of the physiological role of peripheral clocks in insects. The latter are significant in the generation and coordination of rhythmic phenomena which facilitate the initial stages of sperm capacitation. This process requires the maintenance of pH in the upper vas deferens (UVD) aided by, among others, H+-ATPase. Our aim was to determine the potential involvement of carbonic anhydrase (CA) in this process, an enzyme tasked with generating protons subsequently utilized by H+-ATPase to acidify the UVD milieu in S. littoralis, during the time when the lumen of this organ is filled with sperm. We attempted to answer the question whether CA activity can be controlled by the biological oscillator present in the male reproductive tract of the cotton leafworm. Using PAGE zymography, the presence of CA was demonstrated in the UVD wall, but not in the luminal fluid nor in the sperm. Using histochemistry, it was shown that CA is active in the UVD epithelium, and that this activity varies throughout the day and is most likely controlled by an endogenous biological clock. Conversely, the application of CA inhibitors, acetazolamide and sodium thiocyanate, in conjunction with an analysis of H+-ATPase activity in the acidification the UVD environment shows that CA most likely does not play a direct role in the regulation of the pH in this organ.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.