Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  amphotericin B
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We examined the effect of amphotericin B (AmB) on the following enzymatic markers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and on non-enzymatic markers: glucose, triglycerides, and proteins in the haemolymph of a model organism, Apis mellifera. AmB is an antifungal antibiotic. Despite its toxicity, it is used to treat disease conditions. The haemolymph of honey bees is considered as an analogue of human blood, and changes in marker values indicate pathological states, both in humans and honey bees. Three groups of caged bees were fed sugar syrup (the control group). The syrup was supplemented with AmB at concentrations of 0.25 mg/ml (AmB-25) and 0.50 mg/ml (AmB-50). The authors observed that the biochemical markers were age-related in the control group. Decreased values of the enzymatic markers in the AmB-treated groups confirm that AmB has a negative effect on the organism. The higher the dose of the antibiotic, the greater the increase in the concentration of the non-enzymatic markers. Our research shows that honey bees are an important model for studying the effects of AmB.
Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of fungal infections. According to the general understanding, the mode of action of AmB is directly related to the molecular organization of the drug in the lipid environment, in particular to the formation of pore-like molecular aggregates. Electronic absorption and fluorescence techniques were applied to investigate formation of molecular aggregates of AmB in the lipid environment of liposomes and monomolecular layers formed at the argon-water interface. It appears that AmB dimers, stabilized by van der Waals interactions, are present in the membrane environment along with the aggregates formed by a greater number of molecules. Linear dichroism measurements reveal that AmB is distributed between two fractions of molecules, differently oriented with respect to the bilayer. Molecules in one fraction remain parallel to the plane of the membrane and molecules in the other one are perpendicular. Scanning Force Microscopy imaging of the surface topography of the monolayers formed with AmB in the presence of lipids reveals formation of pore-like structures characterized by the external diameter close to 17 Å and the internal diameter close to 6 Å. All the findings are discussed in terms of importance of the molecular organization of AmB in the pharmacological action, as well as of the toxic side effects of the drug.
N-Methyl-N-D-fructosyl-amphotericin B methyl ester (MFAME) is a new derivative of amphotericin B, which is characterised by low toxicity to mammalian cells and good solubility in water of its salts. The antifungal activity and effects of MFAME towards Candida albicans and Saccharomyces cerevisiae multidrug resistant MDR(+) and sensitive MDR(-) strains was compared with those of parent compound. The results obtained indicate that MDR(+) S. cerevisiae was sensitive to MFAME as well as to AMB. MFAME exhibited the same effects on fungal cells studied as parent antibiotic. The two antibiotics, depending on the dose applied induced cell stimulation, K+ efflux, and/or had a toxic effect.
Amphotericin B (AmB) is a well known polyene macrolide antibiotic used to treat systemic fungal infections. Despite its toxicity AmB is still regarded as a life-saving drug. The lack of adequate knowledge of the AmB mechanism of action is a serious obstacle to efficient development of new less toxic derivatives. Complementary to various experimental approaches, computational chemistry methods were used to study AmB mechanism of action. A programme lasting for a decade, that was run by our group covered studies of: i) molecular properties of AmB and its membrane targets, ii) structure and properties of AmB membrane channels, and iii) interaction of AmB with the membrane.
The kinetics of the hemolysis induced by filipin is of the damage type, indicating the formation of large nonselective perforations of erythrocyte membranes. The process is relatively independent of the ionic composition of the incubation medium, and the differences between the hemolysis induced by filipin in pig and human erythrocytes are not significant. In a sucrose medium, filipin-induced hemolysis is inhibited in humans, whereas it is stimulated in pig erythrocytes. It is suggested that low ionic strength is the reason for the different modifications of complexation of filipin in pig and human erythrocyte membranes in a sucrose medium. The kinetics of the hemolysis induced in pig erythrocytes by amphotericin B and nystatin is of the permeability type, indicating the formation of selective channels in erythrocyte membranes and colloid osmotic hemolysis. The rate of the hemolysis, which is high in a KCl medium, is decreased in all the other media tested (CaCl2, MgCl2, potassium phosphate buffer, K2S04, sucrose), although there are no changes in the kinetics of hemolysis. The results are interpreted as the formation of highly selective channels at a low concentration of the antibiotics. At increasing concentrations, channels of decreasing selectivity occur. The resistances of pig erythrocytes to amphotericin B and nystatin are lower than those of human erythrocytes.
Rational chemical modification of amphotericin B (AMB) led to the synthesis of sterically hindered AMB derivatives. The selected optimal compound, N-methyl- N-D-fructosyl amphotericin B methyl ester (MF-AME) retains the broad spectrum of antifungal activity of the parent antibiotic, and exhibits a two orders of magnitude lower toxicity in vivo and in vitro against mammalian cells. Comparative studies of MF-AME and AMB comprising the determination of the spectroscopic properties of monomeric and self-associated forms of the antibiotics, the investigation of the influence of self-association on toxicity to human red blood cells, and of the antibiotic-sterol interaction were performed. On the basis of the results obtained it can be assumed that the improvement of the selective toxicity of MF-AME could in part be a consequence of the diminished concentration of water soluble oligomers in aqueous medium, and the better ability to differentiate between cholesterol and ergosterol.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.