Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  actinomycin D
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Glutathione-S-transferase (GST) a Phase-II drug detoxification enzyme, was detected in Setaria cervi, a bovine filarial parasite. In vitro effect of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone on the GST of adult female S. cervi was assayed by the addition of these compounds in the maintenance medium. The specific activity of GST towards 1-chloro-2,4-dinitrobenzene was increased progressively 1.2–1.97, 1.3–2.4 and 1.2–2.7 times at 10–100 µM of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone, respectively, after 5 h at 37oC. Substrate specificity studies showed a higher increase in specific activity with ethacrynic acid and no change with cumene hydroperoxide. Although the intensity of GST activity band was more in extract from diethylcarbamazine or butylated hydroxyanisole treated worms extract, an extra band of activity appeared in those worm extracts compared to control worm extract. SDS/PAGE showed increased thickness of the band corresponding to purified GST in extracts from diethylcarbamazine/butylated hydroxyanisole/phenobarbitone treated worms. Purification and quantification of GST from diethylcarbamazine and butylated hydroxyanisole treated worms indicated an increase in enzyme specific activity. The increase in GST protein by these agents was blocked by prior treatment with actinomycin D, indicative of a transcription dependent response. The role of this enzyme in motility and viability of microfilariae and adult female was tested in vitro using a range of known GST inhibitors. Of those tested, ethacrynic acid, ellagic acid, 1-chloro-2,4-dinitrobenzene, cibacron blue and butylated hydroxyanisole reduced the viability and motility of microfilariae and adult female worms at micromolar concentrations. These results suggest that S. cervi GST is inducible in response to the antifilarial drug diethylcarbamazine and may play an important role in parasite’s survival, thus could be a potential drug target.
Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs.
The mode of action of many anticancer drugs involves DNA interactions. We here examine the ability of actinomycin D to alter the specific binding of transcription factors Sp1 and NFκB to their DNA sequences. Employing an electrophoretic mobility shift assay, it is shown that actinomycin D inhibits complex formation between nuclear proteins present in the extracts from stimulated human umbilical vein endothelial cells and the Sp1-binding site. Actinomycin D is also able to induce disruption of preformed DNA-protein complexes, pointing to the importance of an equilibrium of three components: actinomycin D, protein and DNA for drug action. The effect of actinomycin D is sequence-specific, since no inhibition is observed for interaction of nuclear proteins with the NFκB binding site. The results support the view that DNA-binding drugs displaying high sequence-selectivity can exhibit distinct effects on the interaction between DNA and different DNA-binding proteins.
9-Aminoacridine carboxamide derivatives studied here form with DNA intercalative complexes which differ in the kinetics of dissociation. Inhibition of total RNA synthesis catalyzed by phage T7 and Escherichia coli DNA-dependent RNA polymerases correlates with the formation of slowly dissociating acridine-DNA complex of time constant of 0.4-2.3 s. Their effect on RNA synthesis is compared with other ligands which form with DNA stable complexes of different steric properties. T7 RNA polymerase is more sensitive to distamycin A and netropsin than the E. coli enzyme while less sensitive to actinomycin D. Actinomycin induces terminations in the transcript synthesized by T7 RNA polymerase. Despite low dissociation rates of DNA complexes with acridines and pyrrole antibiotics no drug dependent terminations are observed with these ligands.
Chromatin stability is an important determinant of semen quality, essential for spermatozoa maturation in epididymes and early embryogenesis. A radioisotope method based on the quantitative measurements of tritium-labelled actinomycin D (3H-AMD) incorporation into the spermatozoa nuclei was used to assess chromatin stabilization of boar spermatozoa incubated with physiological (reduced glutathione – GSH, heparin – H and bosine serum albumin – BSA) or non-physiological (dithiothreitol – DTT, disodium ethylenediaminetetra acetate – EDTA, 2-mercaptoethanol – ME and sodium dodecyl sulphate – SDS) decondensing agents.The effect of the composition of seminal plasma and the role of zinc ions in chromatin stability of spermatozoa were also studied. Pre-treatment of spermatozoa with GSH, H, DTT, ME or SDS resulted in an increase in the incorporation of 3H-AMD into the spermatozoa nuclei. In contrast, when sperm samples were treated with BSA or EDTA there was a reduction in the incorporation of 3H-AMD, what was attributed to hyperstabilization of chromatin. A presumed hyperstabilization was also observed when SDS+EDTA+H were used. On the other hand, an exceptionally strong action of decondensation of chromatin was induced by H+BSA. Increased incorporation of 3H-AMD into the spermatozoa nuclei was concomitant with low zinc and protein content in the seminal plasma of boars following depletion test (DT), suggesting disturbances in chromatin stability. The presented radioisotope method based on the application of 3H-AMD is a simple and reliable assay that can be used to monitor the chromatin status of boar spermatozoa.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.