Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  RNA interference
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The sequencing of several complete genomes and the development of a DNA microarray technology are among the most important achievements of molecular biology. They gave the proper grounds for the development of modern functional genomics. However, there is one additional condition which needs to be satisfied to truely enable the study of how a genome works: a suitable method of selectively inducing and silencing the expression of each individual gene. The methods used so far have usually only permitted the influfencing of gene expression through genetic manipulations at the DNA level (genetically modified plants). The discovery of RNA interference (RNAi) opens up completely new possibilities of research on the functioning of particular plant genes, without the necessity of altering the genome structure. In this case, interference takes place at the transcript level. Thus, at any given moment during plant development, the expression of a specific gene (or several genes) can be inhibited, even if it is important for the survival of the organism under study. To this end, a double-stranded RNA inducing the RNAi phenomenon has to be delivered into the plant cell. Here we describe the construction of four brome mosaic virus-based vectors, which, as our preliminary data indicate, can be used to transfer RNA into barley cells.
Plant RNA interference has been a very well studied phenomenon since its discovery. We are well versed with the types of small noncoding RNAs that are prevalent in the plant systems and their pathways of biogenesis and subsequent actions. However, apart from model plant systems such as Arabidopsis and Oryza, very little information is available regarding the other members of the RNA interference machinery; specially Argonaute proteins which acts as the major stabilizing factor for execution of the interference. This work focuses on the exploration of the sequenced crop genomes available on the web using a hybrid approach of computational protein fishing and genome mining. The results indicate that this hybrid approach was successful in the identification of argonaute proteins in the crop genomes under study.
The telomere structures in Bombyx mori are thought to be maintained mainly by the transposition of the specialized telomeric retroelements SART and TRAS. The silkworm genome has telomeric TTAGG repeats and telomerase, but this telomerase displays little or no activity. Here, we report that the transcription of the telomeric retroelements SART1 and TRAS1 is suppressed by the silkworm Piwi subfamily proteins BmAgo3 and Siwi. The silkworm Piwi subfamily was found to be expressed predominantly in the gonads and early embryo, as in other model organisms, but in BmN4 cultured cells, these proteins formed granules that were separate from the nuage, which is a different behaviour pattern. The expression of TRAS1 was increased in BmN4 cells when BmAgo3 or Siwi were silenced by RNAi. Our results suggest that B. mori Piwi proteins are involved in regulating the transposition of telomeric retroelements, and that the functional piRNA pathway is conserved in BmN4 cultured cells.
Although there are many reports about the efficacy of siRNAs, it is not clear whether those siRNAs with high C/G contents can be used to silence their target mRNAs efficiently. In this study, we investigated the structure and function of a group of siRNAs with high C/G contents. The results showed that single siRNAs against the Calpain, Otoferlin and Her2 mRNAs could induce different silencing effects on their targets, suggesting that the accessibility to target sequences influences the efficacy of siRNA. Unexpectedly, a single siRNA could target its cognate sequence in the 3’UTR of EEF1D or the 5’UTR of hTRF2 or CDC6. Their interaction induced different modes of gene silencing. Furthermore, the introduction of mutations into the 3’ end of the passenger strand showed that the position and number of mutated nucleotides could exert some influence on the efficacy of siRNA. However, these mutations did not completely block the passenger strand from exerting its RNAi effect. Interestingly, our findings also indicated that the target mRNA might play essential roles in maintaining or discarding the guide strand in RISCs. Thus, the conclusion could be drawn that favorable siRNA sequences, accessible target structures and the fast cleavage mode are necessary and sufficient prerequisites for efficient RNAi.
 It is well known that 5-lipoxygenase derivates of arachidonic acid play an important pathogenic role during myocardial infarction. Therefore, the gene encoding arachidonate 5-lipoxygenase (ALOX5) appears to be an attractive target for RNA interference (RNAi) application. In experiments on cultivated cardiomyocytes with anoxia-reoxygenation (AR) and in vivo using rat model of heart ischemia-reperfusion (IR) we determined influence of ALOX5 silencing on myocardial cell death. ALOX5 silencing was quantified using real-time PCR, semi-quantitative PCR, and evaluation of LTC4 concentration in cardiac tissue. A 4.7-fold decrease of ALOX5 expression (P < 0.05) was observed in isolated cardiomyocytes together with a reduced number of necrotic cardiomyocytes (P < 0.05), increased number live (P < 0.05) and unchanged number of apoptotic cells during AR of cardiomyocytes. Downregulation of ALOX5 expression in myocardial tissue by 19% (P < 0.05) resulted in a 3.8-fold reduction of infarct size in an open chest rat model of heart IR (P < 0.05). Thus, RNAi targeting of ALOX5 protects heart cells against IR injury both in culture and in vivo.
The laminin-binding protein, variously called the 37/67-kDa high affinity laminin receptor or p40, mediates the attachment of normal cells to the laminin network, and also has a role as a ribosomal protein. Over-expression of this protein has been strongly correlated with the metastatic phenotype. However, few studies have investigated the cellular consequence of the ablation of this gene’s expression. To address this issue, the expression of the 37/67-kDa high affinity laminin receptor was knocked out with several siRNA constructs via RNA interference in transformed liver (Hep3B) cells. In each case where the message was specifically ablated, apoptosis was induced, as determined by annexin V/propidium iodide staining, and by double staining with annexin V and an antibody directed against the 37/67-kDa high affinity laminin receptor. These results suggest that this protein plays a critical role in maintaining cell viability.
Transforming growth factor beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation and survival/or apoptosis of many cells. Knock-out experiments in mice for the three isoforms of TGF-β have demonstrated their importance in regulating inflammation and tissue repair. TGF-β is implicated in the pathogenesis of human diseases, including tissue fibrosis and carcinogenesis. TGF-β receptors act through multiple intracellular pathways. Upon binding of TGF-β with its receptor, receptor-regulated Smad2/3 proteins become phosphorylated and associate with Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of specific genes. Negative regulation of TGF-β/Smad signalling may occur through the inhibitory Smad6/7. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signalling and activates stress-activated kinases: p38 through MKK6 or MKK3 and c-Jun N-terminal kinases (JNKs) via MKK4. In the brain TGF-β, normally expressed at the very low level, increases dramatically after injury. Increased mRNA levels of the three TGF-β isoforms correlate with the degree of malignancy of human gliomas. TGF-βs are secreted as latent precursors requiring activation into the mature form. TGF-β may contribute to tumour pathogenesis by direct support of tumour growth and influence on local microenvironment, resulting in immunosuppression, induction of angiogenesis, and modification of the extracellular matrix. TGF-β1,2 may stimulate production of vascular endothelial growth factor (VEGF) as well as plasminogen activator inhibitor (PAI-I), that are involved in vascular remodelling occurring during angiogenesis. Blocking of TGF-β action inhibits tumour viability, migration, metastases in mammary cancer, melanoma and prostate cancer model. Reduction of TGF-β production and activity may be a promising target of therapeutic strategies to control tumour growth.
Biot2 is a novel murine testis-specific gene that was first identified using the SEREX technique, and named by our laboratory. Using conventional RT-PCR and real time RT-PCR, we tested the expression profile of Biot2 in normal tissues and various murine tumor cell lines. Using RNA interference, we studied the biological function of Biot2 in tumorigenesis. We applied various types of growth assay, such as the in vitro MTT, colony-forming and BrdU incorporation assays, along with in vivo tumorigenicity assays, to reveal its inhibition of tumor cell proliferation. The results revealed that the Biot2 transcript was detected only and strongly in the testis tissues and abundantly in five types of murine cancer cell line. Treating B16 murine melanoma, LL/2 murine Lewis lung carcinoma and CT26 murine colorectal adenocarcinoma with special shRNA targeting Biot2 can significantly reduce the proliferation rate of these three tumor cell lines in vitro, as measured by the MTT, colony-forming and BrdU incorporation assays. The tumorigenicity of the CT26 cells transfected with special shRNA targeting Biot2 was also decreased distinctly in vivo compared with the control. It was therefore concluded that Biot2 plays a key role in tumorigenesis and could be a potential target for biotherapy.
Rab7 GTPases are involved in membrane trafficking in the late endosomal/lysosomal pathway. In Paramecium octaurelia Rab7a and Rab7b are encoded by paralogous genes. Antipeptide antibodies generated against divergent C-termini recognize Rab7a of 22.5 kDa and Rab7b of 25 kDa, respectively. In 2D gel electrophoresis two immunoreactive spots were identified for Rab7b at pI about 6.34 and about 6.18 and only one spot for Rab7a of pI about 6.34 suggesting post-translational modification of Rab7b. Mass spectrometry revealed eight identical phosphorylated residues in the both proteins. ProQ Emerald staining and ConA overlay of immunoprecipitated Rab7b indicated its putative glycosylation that was further supported bya faster electrophoretic mobility of this protein upon deglycosylation. Such a post-translational modification and substitution of Ala140 in Rab7a for Ser140 in Rab7b may result in distinct targeting to the oral apparatus where Rab7b associates with the microtubular structures as revealed by STED confocal and electron microscopy. Rab7a was mapped to phagosomal compartment. Absolute qReal-Time PCR analysis revealed that expression of Rab7a was 2.6-fold higher than that of Rab7b. Upon latex internalization it was further 2-fold increased for Rab7a and only slightly for Rab7b. Post-transcriptional gene silencing of rab7a suppressed phagosome formation by 70 % and impaired their acidification. Ultrastructural analysis with double immunogold labeling revealed that this effect was due to the lack of V-ATPase recruitment to phagolysosomes. No significant phenotype changes were noticed in cells upon rab7b silencing. In conclusion, Rab7b acquired a new function, whereas Rab7a can be assigned to the phagolysosomal pathway.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.