Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  RNA genome
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Eight Polish strains of European brown hare syndrome virus, isolated in 1992-93, 1998 and 2001, as well as 2 standard strains: French (F/st) and Italian (It/st) were analysed. The fragments of genome, including the capsid protein gene, were amplified by RT-PCR or N-PCR and digested by endonucleases: Xho I, Sst I, BamH I, Sma I, Hpa II and BsuR I. The results of restriction enzyme digestion were compared with restriction maps, obtained after computer analysis of nucleotide sequences of other European strains, available in GenBank. The results of analysis of Polish strains, isolated in different years, revealed the changes in restriction profiles between them and other European strains. The 3 out of 5 Polish strains detected in 1992-93 demonstrated the same restriction profiles, similar to French "GD" strain. The two other strains revealed, for same endonucleases, restriction patterns similar to ltalian "BS89" or German strains. The strains isolated in 1998 and 2001 demonstrated higher differences in restriction profiles in comparison with Polish and other European strains previously detected. These changes in nucleotide scquences of the part of genome studied, indicate the diversity of EBHSV.
Studies on the molecular mechanism of genetic recombination in RNA viruses have progressed at the time when experimental systems of efficient recombination crossovers were established. The system of brome mosaic virus (BMV) represents one of the most useful and most advanced tools for investigation of the molecular aspects of the mechanism of RNA-RNA recombination events. By using engineered BMV RNA components, the occurrence of both homologous and nonhomologous crosses were demonstrated among the segments of the BMV RNA genome. Studies show that the two types of crossovers require different RNA signal sequences and that both types depend upon the participation of BMV replicase proteins. Mutations in the two BMV-encoded replicase polypeptides (proteins 1a and 2a) reveal that their different regions participate in homologous and in nonhomologous crossovers. Based on all these data, it is most likely that homologous and nonhomologous recombinant crosses do occur via two different types of template switching events (copy-choice mechanism) where viral replicase complex changes RNA templates during viral RNA replication at distinct signal sequences. In this review we discuss various aspects of the mechanism of RNA recombination in BMV and we emphasize future projections of this research.
The first demonstration on the aminoacylation capacity of the RNA genome of a plant virus appeared more than 25 years ago. Shortly thereafter, aminoacylation of the RNA genome of a number of other plant viruses was observed. This led to considerable work on the tRNA-like region of these viral RNAs, and to the first demonstration of the presence of pseudoknots in their folding pattern. In spite of the vast amount of efforts put into trying to understand the reason for the aminoacylation capacity of certain viral RNA genomes, as yet no clear general conclusion emerges. It rather looks as though the reason for aminoacylation may be different for different viruses, and that aminoacylation may operate at different levels in the virus life cycle. Given that certain RNA viruses possess structures which resemble that of tRNAs at their 5'- or 3'-termini, it is most likely that convergent evolution may have dominated the appearance of such structures in the virus world.
RNA nucleoside triphosphatases (NTPase)/helicases represent a large family of pro­teins that are ubiquitously distributed over a wide range of organisms. The enzymes play essential role in cell development and differentiation, and some of them are in­volved in transcription and replication of viral single-stranded RNA genomes. The en­zymatic activities of a NTPase/helicase were also detected in the carboxyl-terminal non-structural protein 3 (NS3) of members of the Flaviviridae family. The crucial role of the enzyme for the virus life cycle was demonstrated in knock out experiments and by using NTPase/helicase specific inhibitors. This makes the enzyme an attractive tar­get for development of Flaviviridae-specific antiviral therapies. This review will sum-marize our knowledge about the function and structure of the enzyme, update the spectrum of inhibitors of the enzymatic activities of the NTPase/helicase and describe the different mechanisms by which the compounds act. Some of the compounds reviewed herein could show potential utility as antiviral agents against Flaviviridae viruses.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.