Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Palmatolepis transitans
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Well exposed Early–Middle Frasnian (E–MF, Palmatolepis transitans to Palmatolepis punctata zonal interval) deposits of the Holy Cross Mountains, in particular the reference Wietrznia section at Kielce, were studied in terms of conodont biofacies dynamics. Frequency of the conodont elements has been controlled mostly by depositional rate in hemipelagic muddy lithofacies and post−mortem gravity sorting during lateral redeposition in storm−generated, talus−like and encrinite layers. The conodont assemblages are dominated by a highly varying proportion of polygnathid, icriodontid, and ancyrodellid fauna. Major biofacies turnovers coincided with the deepening pulses corresponding to Timan, Middlesex, and early Rhinestreet global events. Trends in the conodont dynamics, mortality, and diversity point that the biotic shifts also coincide with the large−scale δ¹³C excursions as a record of changing trophic conditions during the major biogeochemical perturbation. A gradual decline of the Early Frasnian Ancyrodella reef−dwelling community correlates with the minor positive and succeeding larger negative δ¹³C excursion, and this is paired with a replacement by, mostly sparse, polygnathid and polygnathid−icriodontid biofacies, as well as with a short−term Belodella acme in mud−mounds areas. The distinctive habitat deterioration in pelagic and reef ecosystems is broadly correlative with the Domanik Crisis. The progressive biofacies unification is a conodont response to onset of the prolonged (ca. 0.5 Ma) δ¹³C enrichment, probably linked with high−stress life conditions due to eutrophication and partly anoxic regimes. A negative carbon isotope excursion in the late Pamatolepis punctata Zone is marked by the second major biofacies turning point during the Rhinestreet transgression, as recorded primarily in a final mesotaxid extinction, and highlighted also by decrease of conodont size and increased mortality of juveniles. After stabilization of δ¹³C values and a return to the background level across the Palmatolepis punctata–Palmatolepis hassi zonal transition, renewed biofacies diversification, in particular re−appearance of reef−related ancyrodellid fauna, took place. In addition, a large−scale migration event among palmatolepids and polygnathids during sea−level rise, mainly from the East European Platform, characterised this Middle Frasnian interval.
Early to Middle Frasnian (E–MF) epicontinental sequences are investigated in five representative localities of the Holy Cross Mountains and Cracow region, with emphasis on conodont biostratigraphy, to evaluate the regional stratigraphic and biotic context of a major biogeochemical perturbation in global carbon cycling. Conodont associations from the Palmatolepis transitans to Palmatolepis punctata Zone boundary beds are dominated by the shallow−water polygnathid and ancyrodellid fauna in the South Polish epicontinental successions, and first appearances of index palmatolepid species are delayed due to facies control of pelagic environments during intermittent drowning of the carbonate shelf. Thus, identification of the zonal boundary is based mainly on species of Ancyrodella, and five distinctive ancyrodellid levels in the succession across the E–MF interval enable refined correlation of the sections studied, especially when paired with chemostratigraphic proxies. Prominent conodont biofacies shifts coincided with eustatic deepening, which is correlated with the Timan, Middlesex, and early Rhinestreet events, respectively. Trends in the conodont dynamics, mortality and diversity, partly replicated by the benthic biota (especially shelly faunas and crinoids), indicate that the faunal turnovers correlate also with the main δ¹³C excursions and related changes in trophic conditions. The E–MF transitional interval, marked by short−term sea−level fluctuations, is distinguished by a change from relatively diversified biofacies to more homogenous, mostly impoverished faunas. The latter change is a biotic response to the beginning of a prolonged (ca. 0.5 Ma) positive δ¹³C anomaly, probably paired with unsteady eutrophic and partly anoxic regimes. The late Pa. punctata Zone negative carbon isotope anomaly is synchronous with the second large−scale pelagic biofacies remodelling, including mesotaxid extinction. A stabilization of the carbon cycle and its return to normal background values at the start of the Early Palmatolepis hassi Zone coincide with conodont biofacies diversification and recovery of reef−related biofacies. With the exception of collapsed, endemic Kadzielnia−type mud−mound biota and a moderate biodiversity depletion due to overall ecosystem stagnation, no significant extinction events can be demonstrated, even if the large−scale changes in carbon cycling during the E–MF timespan are of higher−amplitude than the celebrated carbon isotopic anomalies related to the Frasnian–Famennian mass extinction. Thus, this regional succession in detail confirms that the large−scale punctata Isotopic Event (= Pa. punctata Event) is correlated neither with catastrophic enviromental nor radical biotic changes.
Early–Middle Frasnian ostracods and crinoids from Wietrznia in the Northern Kielce subregion of the Holy Cross area were analyzed. Twenty three ostracod species assigned to thirteen named genera, as well as eighteen crinoid species including the representatives of fifteen stem−based taxa were distinguished. For most of the species open nomenclature is applied. The composition of ostracod assemblage changes from moderately diverse in the lower part of the Palmatolepis transitans Zone to poorly diverse in its higher part. Lack of ostracods in the uppermost part of the Pa. transitans Zone and in the Palmatolepis punctata Zone is noted. The crinoid distribution pattern comprises the interval of relatively high diversity, interrupted in the uppermost part of the Pa. transitans Zone, and the interval of temporary recovery in the lower Pa. punctata Zone. Such distribution patterns point to deterioration of environmental conditions across the Early–Middle Frasnian transition, coinciding with a large−scale C−isotopic perturbation superimposed on intermittent, two−step eustatic sea level rise. On the other hand, impoverished, surviving crinoid faunas and absence of ostracods in the Pa. punctata Zone indicate the overall long−term deterioration of life conditions through the major C−isotope anomaly time span. However, this may also result from synsedimentary tectonic pulses, causing block movements and large−scale resedimentation phenomena on the northern slope of the Dyminy Reef during the basal Middle Frasnian sea level rise.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.