Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Kobresia
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Three sites with both degraded alpine Kobresia meadow (DM) and adjacent mix-seeded perennial grasses pastures (MSP) in the headwater region of the Yellow River, Qinghai-Tibetan Plateau, were selected to investigate plant and soil organic carbon (SOC), total nitrogen (TN) and their isotope composition. The SOC and TN in the top soil layer to a depth of 10 cm were significantly affected by ploughing and planting mix-seeded perennial grasses. The SOC content in 0–10 cm soil layer of MSPs was 25.6%, 5.5% and 12.9% lower than those of DMs at the I-III sites, respectively, and the rate of OC density loss was 23.8, 14.5 and 18.2%, respectively. The soil TN content in 0–10 cm soil layer of MSPs was 16.6%, 2.2% and 9.4% lower than those of the DMs at three sites, respectively, and the TN density was 15.6, 10.6 and 15.3% lower than those of DMs, respectively. The plant and soil ¹³C values (-27.03‰, -25.16‰, respectively) suggest that the vegetation of both DMs and MSPs are C₃ plant communities. The 15 N value in the soil (>4‰) was significantly greater than in plants (<2‰). No differences of either ¹³C or ¹⁵N abundance between MSPs and DMs at Site I and II, but were found at Site III, indicating that the effects were site specific. The rehabilitation of a degraded Kobresia meadow has a significant influence on the soil properties, SOC and TN. Caution should be taken in site selection before performing conversion.
Grassland degradation due to anthropogenic and natural factors and their interactions is one of the worldwide ecological and economic problems because it reduces grassland productivity and diversity and leads to desertification. The objective of this study was to assess the influence of protective enclosure on vegetation composition and diversity and plant biomass of an alpine degraded meadow. The experiment was conducted at center of Qinghai-Tibetan Plateau with two degraded (caused by overgrazing) alpine meadows: the lightly and severely degraded ones (LD and SD) and their enclosed areas with iron net (LDE and SDE, respectively). The areas 200 m × 150 m for each of four degraded alpine meadow treatments at average altitude 3,960 m a.s.l. were set for research. The lightly degraded plots were dominated by Scirpus distigmaticus (Kukenth.) Tang et Wang, Elymus nutans Griseb. and Oxytropis ochrocephala Bunge. The dominating plants in severely degraded plots were: Artemisia sieversiana Ehrhart ex Willd, Ajania tenuifolia (Jacq.) Tzvel, Lonicera minuta Batal. The results showed: (1) the vegetation cover of two degraded plots (LD and SD) has increased after taking the enclosure measures and the forbs dominated both plots. (2) Species richness has also increased in two enclosed degraded plots, respectively. There no significant differences in evenness and diversity between LD and LDE, and SD and SDE, respectively. (3) Enclosure may promote aboveground biomass, particularly grass and forb biomass in LD, and forb biomass in SD plots.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.