Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Congo red
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The postulated intramolecular signaling in immunoglobulins generated by antigen binding has been controversial for years. The high heterogeneity of immune complexes as signaling systems and the requirement of the immobilized antigen form for efficient triggering of effector activity is likely the reason for the lack of clarity. Here we present new evidence supporting the notion of intramolecular signaling, based on the use of supramolecular dyes that bind to signal-derived specific sites in immunoglobulins.
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for /3-struc- ture. Complexation with proteins was measured directly and expressed as the num­ber of dye molecules bound to heat-aggregated IgG and to two light chains with dif­ferent structural stability. Binding of dyes to rabbit antibodies was measured indi­rectly as the enhancement effect of the dye on immune complex formation. Self-as­sembling was tested using dynamic light scattering to measure the size of the supra- molecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of /3-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supra- molecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unsta­ble supramolecular entities are less able to bind.
Congo red and a group of structurally related dyes long used to stain amyloid proteins are known to associate in water solutions. The self-association of some dyes belonging to this group appears particularly strong. In water solutions their molecules are arranged in ribbon-like micellar forms with liquid crystalline properties. These compounds have recently been found to form complexeswith some native proteins in a non-standard way. Gaps formed by the local distribution of β-sheets in proteins probably represent the receptor sites for these dye ligands. They may result from higher structural instability in unfolding conditions, but also may appear as long range cooperative fluctuations generated by ligand binding. Immunoglobulins G were chosen as model binding proteins to check the mechanism of binding of these dyes. The sites of structural changes generated by antigen binding in antibodies, believed to act as a signal propagated to distant parts of the molecule, were assumed to be suitable sites for the complexation of liquid-crystalline dyes. This assumption was confirmed by proving that antibodies engaged in immune complexation really do bind these dyes; as expected, this binding affects their function by significantly enhancing antigen binding and simultaneously inhibiting C1q attachment. Binding of these supramolecular dyes by some other native proteins including serpins and their natural complexes was also shown. The strict dependence of the ligation properties on strong self-assembling and the particular arrangement of dye molecules indicate that supramolecularity is the feature that creates non-standard protein ligands, with potential uses in medicine and experimental science.
The ability of Congo red to form complexes with α-proteins, human growth hormone and human interferon-α2b, was found by absorption difference spectroscopy. A human growth hormone-Congo red complex was isolated by gel-permeation chromatography, and its visible absorption spectrum was registered in comparison to free dye. The ability of Congo red to induce dimerization of human growth hormone was demonstrated using chemical cross-linking agents 1,3,5-triacryloyl-hexahydro-s-triazine and ethylene glycol bis(succinimidylsuccinate).
Succinate dehydrogenase (SDH) and acid phosphatase (AcP) activity in Phaseolus lunatus seed testa are demonstrated in enzyme tests, and uptake and transport of vital and indicator dyes such as methylene blue, Congo red and tetrazolium in the seed testa are examined by light and transmission electron microscopy. SDH activity was observed in the vascular bundles (endotesta) and in some cells in endo- and mesotesta. AcP activity was located near cell walls in both meso- and endotesta. In the vascular bundles there was very little AcP activity. Vital and indicator dyes were conducted from the exotesta (hilum) to endotesta. Vesicle mobilization was observed in the mesotesta. Strong enzyme activity in the meso- and endotesta and vesicle mobilization in the mesotesta suggest the potential active role of testa strata in imbibition and the initial nutritional stage of germination.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.