Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  American bison
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A link between dental abnormalities and loss of genetic variation has been reported for unconfined populations of American bison Bison bison (Linnaeus, 1758) but not for captive populations. From a zoo herd with a small founder population and likely history of inbreeding, we report the first recorded occurrence of dental abnormalities in captive bison and the first case of supernumerary second premolars in bison.
We characterized social and spatial patterns of wallowing (dust-bathing) behavior in an American bison Bison bison (Linnaeus, 1758) population on a tallgrass prairie site in Oklahoma, USA. Consistent with earlier studies, wallowing was primarily practiced by adults, Unlike earlier studies, however, aggressive interactions associated with wallowing incidents were rare, probably due to the reduced bullicow ratio in the population. Forty-three significant soil disturbance sites, known as wallows, were created by wallowing activity during the 2-year study. The spatial distribution of wallows was significantly different from overall bison habitat use patterns for some landscape characteristics. Bison preferentially formed wallows on relatively level areas on spring and fall burns, thus avoiding summer burns, unburned areas, and severe slopes. Bison wallowed exclusively on bare or exposed soils when not using wallows, and in many instances wallowed on soil disturbed by other animals. When coupled with a preference for wallowing on relatively coarse soils, bison clearly exhibit a macro- and microsite preference for the conduction of this behavior. This preference has important implications for wallow distribution and their resulting ecological function in prairie environments.
Here we present the first attempt to use the BovineSNP50 Illumina Genotyping BeadChip for genome-wide screening of European bison Bison bonasus bonasus (EB), two subspecies of American bison: the plains bison Bison bison bison (PB), the wood bison Bison bison athabascae (WB) and seven cattle Bos taurus breeds. Our aims were to (1) reconstruct their evolutionary relationships, (2) detect any genetic signature of past bottlenecks and to quantify the consequences of bottlenecks on the genetic distances amongst bison subspecies and cattle, and (3) detect loci under positive or stabilizing selection. A Bayesian clustering procedure (STRUCTURE) detected ten genetically distinct clusters, with separation among all seven cattle breeds and European and American bison, but no separation between plain and wood bison. A linkage disequilibrium based program (LDNE) was used to estimate the effective population size (N e) for the cattle breeds; N e was generally low, relative to the census size of the breeds (cattle breeds: mean N e = 299.5, min N e = 18.1, max N e = 755.0). BOTTLENECK 1.2 detected signs of population bottlenecks in EB, PB and WB populations (sign test and standardized sign test: p = 0.0001). Evidence for loci under selection was found in cattle but not in bison. All extant wild populations of bison have shown to have survived severe bottlenecks, which has likely had large effects on genetic diversity within and differentiation among groups.
We studied the variation of linear measurements and skull capacity in Lowland European bisonBison bonasus bonasus (Linnaeus, 1758) during postnatal development, and the dependencies of the parameters in relation to sex, age, and body mass of the animals. Material consisted of 599 bison skulls (310 males and 289 females), within the age range of 1 month to 21 years (males) and to 27 years (females). In the group of calves to 1 year old, no sex connected differences in skull measurements were observed, whereas the skull capacity in older calves was significantly larger (0.01>p>0.001) in males than in females. From the third year of life, most skull measurements display characteristics of sexual dimorphism. Skull development in both sexes is most intensive during the first three years of life, and slows from the age of 5. In older individuals of both sexes (≥ 6 years), orbital breadth continues growing and, in females, breadth of splanchnocranium continues increasing. Growth in a bison’s skull capacity is most intensive up to the third year of life and slows from the age of 5. During postnatal development, a bison skull grows proportionally except the neurocranium, which grows slightly slower in comparison with basal length and its development finishes earlier than that of splanchnocranium. In ontogenesis, a bison skull grows much slower compared to body mass. In relation to body mass, skull capacity and the height of neurocranium grow most slowly while orbital breadth grows most intensively. The results obtained were compared with data on skull sizes of bison born in 1930–1950 and bred in captivity and with skulls of the American bisonBison bison. Inbreeding is probably responsible for some types of phenotypic abnormalities in the skull which appear in modern European bison.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.