Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Abies faxoniana
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Natural regeneration of forest depends on the light regimes of floor. Point-based methods such as fisheye photo and radiometer can not provide a full panorama of light regime of heterogeneous forest stand. Eastern Tibetan Plateau is a major forest belt characteristic of diverse forest type and topographic differentiation. Understanding the trend of changes of light regime along succession series of forest may be helpful for the management of ecosystems. Fragmented forest patches due to tectonic activity and human intervention have made this prediction difficult. We use a spatially explicit forest stand light model (tRAYci) to simulate light distribution within forest in typical subalpine forest succession series of eastern Tibetan Plateau. Due to the spatial heterogeneity of tree distribution in the subalpine area, the forest stand can be approximated with a spatially explicit model of trees. Three typical subalpine forest stands (Sabina forest (SF), Fir forest (FF) and Birch forest (BF)) are selected in the eastern Tibetan Plateau. The dominant species are sabina (Sabina saltuaria (Rehd. et Wils.) Cheng), fir (Abies faxoniana Rehd. et Wils.) and birch (Betula platyphylla Suk.) for each stand and they are spatially clumped in distribution. They represent old growth coniferous forest (SF, 330 years old), coniferous-broadleaved forest (FF, 180 ys) and pioneer broadleaved forest (BF, 40 ys). The parameters of the three-dimensional model of trees are calibrated with field measurements. The simulated values are generally consistent with observed values of radiation measured by radiometers installed in these stands and values derived from fisheye photos. Test failures may be caused by the incomplete submodel of crown as a gap free one. Light regimes in old growth and pioneer forest are much more heterogeneous than intermediate stages of forest. Light regimes of these forests are also reflected by the composition of understory herb layers.
Determining how changes in atmospheric CO₂ concentrations and climate affects growth of species is helpful for understanding plant community species shift in response to future environmental changes. In the present study, fir (Abies faxoniana) and native herbs from treeline ecotone of east Qinghai-Tibetan Plateau (altitude: 3230–3300 m) were exposed to ambient CO₂ or ambient +350 μmol·mol⁻¹ CO₂ concentration in combination with ambient or ambient +2°C air temperature for two years in enclosedtop chambers. The results showed that elevated CO₂ , elevated temperature and the combination of elevated CO₂ and temperature increased biomass, height and diameter of fir compared to the control. Elevated CO₂ decreased biomass of Deyeuxia scabrescens, but increased for Fragaria orientalis and Cardamine tangutorum. Except for Fragaria orientalis, herbaceous biomass decreased by elevated temperature. The combination stimulated growth of Fragaria orientalis and Cardamine tangutorum, but suppressed for Deyeuxia scabrescens and Carex kansuensis. The results also demonstrated that elevated CO₂ and temperature increased the crown size and altered the morphology of fir, with benefits for resource capture, and did not affect growth of herbs. Larger root to shoot ratio of fir contributed the enhancement of biomass, while negatively influencing the growth of some herbs. This indicates morphological changes of trees may modify their growth responses and species around them to environmental changes. The different effects of elevated CO₂ and temperature on the growth of species in treeline ecotone suggest that climate change may alter community composition and structure.
In woody perennials, leaf structure and biochemistry vary with tree age under changing environments. However, the related eco-physiological mechanisms have not been elucidated yet. In this study, we investigated agerelated responses of juvenile and mature subalpine fir trees (Abies faxoniana Rehder & E.H. Wilson.) growing at altitudes between 2,500 and 3,500 m in the Wanglang Natural Reserve in southwest China, to study the adaptive strategies of different age trees to suit changing environments. We found that there were distinct age- and altituderelated changes in the structural and biochemical characteristics of leaves. At all altitudes, mature trees exhibited higher area- and mass-based leaf nitrogen content (Narea, Nmass), leaf mass per area (LMA) and stable isotope carbon composition (δ13C), and a lower chlorophyll (Chl) content than those juvenile trees, except for Nmass at 3,000 m as well as LMA at 2,750 m, where the values of Nmass and LMA in mature trees were slightly lower than those in juvenile trees. Furthermore, leaf characteristics showed significant differences in the change rates with altitude between different age groups. Our results indicated that assimilative organs in mature trees do not suffering from nutrient deficiency and that juvenile and mature trees possess different adaptive growth strategies under changing environments, as indicated by higher leaf N content in mature trees and the opposite patterns of LMA and Chl content between two age groups. We also concluded that juvenile could be more sensitive to global warming due to a greater altitudinal influence on the leaf traits in juvenile trees than those in mature trees.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.